
Fw

NASA-C_-190894

The SoRReL Papers

• Recent Publications of the

Software Reuse Repository Lab
- " ,,7o/.-iffc_,,V d?2_J,,v'7-

d)__i :>_
David Eichmann (ed.)

West Virginia University

May 20, 1992

o0 I O,
t_ I ("3 cO
eq _) t,q ¢/I P,,
,,-0oC _ t0 O"
t Z I-'- -.I

_ I.- rn U N
o, i O_C ,-_
Z I Z_ O

LO

k-

LL

0,'13

_ tm ..J
_Z
0¢0_

_I--0
,_I--

Lu L,) ,-._

i-- --J 0

_ I.-LU
cOZt_
OIL. :D
C_ Lj _J

I
C_ LU

Z_CD

,-4

C

C

E,-_
0

OE

4.J

C

0
J_ ,o

U_

L

C

Cooperative Agreement NCC 9-16

Research Activity No. SE.43

NASA Johnson Space Center

: - Information Systems Directorate

Information Technology Division

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

_: TECHNICAL REPORT

m

4

, =

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS) in 1986 to encourage the NASA
Johnson Space Center {JSC) and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated
program ofrcsearch in advanced data processing technology needed tot" JSC's

main missions, including administrative, engineering and science responsl-
blliUes. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to Jointly plan and execute such research

through R]CIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two instituUons to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest
to its sponsors and researchers. Wi_ UHCL, :the mission is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and HumaniUes, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover. UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-
Uonal sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help
oversee RICIS research an-I education programs, while other research
organizaUons are involved via the "gateway" concept.

A major role of RICIS then is to flnd the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-
Lion sciences. RICIS, working Jointly with Its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/jSC and industry.

_=
i

V

¢.m

!

._

j

r

m

= ,

The SoRReL Papers

Recent Publications of the

Software Reuse Repository Lab

R

w

w

Rll

II

W

mI

I

I

R

i
!

J

_w

Wm

m_

M

J

W

ii

B
m

I

|

u

RICIS Preface

W

u

n

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. David Eichmann of West Virginia

University. Dr. E. T. Dickerson served as RICIS research coordinator.

Funding was provided by the Information Technology Division, Information

Systems Directorate, NASA/JS.C through Cooperative Agreement NCC 9-16 between

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Ernest M. Fridge, HI of the Information

Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

u

u

w

r_

i

I

i

i

_,!

i

i

m

m

11

i
11

I

=--

i

i

mi

!

-'qli

w

I
SoRReL
West Virginia University
Software Reuse Repository Lab

Department of Statistics and Computer Science

West Virginia University

Morgantown, WV 26506

(304) 293-3607 email: sorreI@cs.wvu.wvnet.edu

F --

w

The SoRReL Papers

Recent Publications of the Software Reuse Repository Lab

w

m

7_

David Eichmann (ed.)

May 20, 1992

w

ii

_I

I

_W

_mm
I

W

m

_J

U

IB

m

wl

_F_bS

J

II

Im

g

w

w

Contents

Eichmann, D. A. and J. Atldns, "Design of a Lattice-Based Faceted Classification System," Second
International Conference on Software Engineering and Knowledge Engineering, Skokie, IL, June 21-23, 1990,
pages 90-97.

Eichmann, D. A., "A Hybrid Approach to Software Repository Retrieval: Blending Faceted Classification and
Type Signatures," Third International Conference on Software Engineering and Knowledge Engineering,
Skokie, IL, June 27-29, 1991, pages 236-240.

Eichmann, D. A., "Selecting Reusable Components Using Algebraic Specifications," in AMAST'91, Workshops
in Computing series, Springer-Verlag, London, UK, due out 1992.

Eichmann, D. A. and K. Srinivas, "Neural Network-Based Retrieval from Reuse Repositories," in Neural
Networks and Pattern Recognition in Human Computer Interaction, R. Beale and J. Findlay (eds), Ellis
Horwood Ltd., West Sussex, UK, 1992, pages 215-228.

M. Sitaraman and D. Eichmann, "Inheritance for Software Reuse: the Good, the Bad, and the Ugly," Fifth
Annual Workshop on Software Reuse, Hemdon, VA, November 18-22, 1991.

Eichmann, D., "S uppordng Multiple Domains in a Single Reuse Repository," Fourth International Conference
on Software Engineering and Knowledge Engineering, Capri, Italy, June 17-19, 1992.

Eichmann, D., "Assessing Repository Technology - Where to We Go From Here?" The International Journal
of Software Engineering and Knowledge Engineering, to appear June 1992, (2)2.

Boetticher, G., K. Srinivas and D. Eichmann, "A Neural Net-Based Approach to Software Metrics," submitted
to the Fourth International Conference on Tools With AriO_icial Intelligence, Arlington, VA, November 10-13
1992.

Eichmann, D. A. and J. Beck, "Balancing Geneficity and Specificity in Component-Based Reuse," submitted to
The International Journal of Software Engineering and Knowledge Engineering.

_7

w _

m

w

u

Iw

w

L-,

W

v

w

r,,,,

___'qk

m

m

.

INN'

B

U

w

w

N93-12385
Design of a Lattice-Based Faceted Classification System

David Eichmann John Atldns

Dept. of Statistics and Computer Science
West Virginia University
Morgantown, WV 26506

Abstract We describe a software reuse architecture

supporting component retrieval by facet classes. The
facets are organized into a lattice of facet value sets and
facet n-tuples. The query mechanism supports both pre-
cise retrieval and flexible browsing.

-- !3zu.N.a_:iaa

"- There are many obstacles in the path to development

of a practical and useful software reuse environment.

Retrieval of"suitable" reuse candidates from a collection

-" of possibly thousands of components is a particularly

significant obstacle. We describe the design of a compo-

, nent classification scheme and its associated query
mechanism. The classification scheme is based upon a

lattice of facet values and facet tuples. The query mecha-

nism uses type inference rules to locate and retrieve those

components whose classifications in the lattice are sub-

- types of the query specification.

_" l,I. Software Reuse

._ Reuse has long been an accepted principle in many

scientific disciplines. Engineers make design decisions

on the availability of components that facilitate product

._ development, biologists use established laboratory instru-

_" ments and chemists use standardized measuring devices

to record experimental results. It would be unthinkable

_- for an engineer to "design and develop" the transistor

every time that a transistor is required in an electrical

instrument. Computer scientists, however, are guilty of a

--7, comparable practice in their discipline: software reuse is

_- not widely practiced in the computer science field. Gen-

erally, the reasons are:

" - 1. Development standards have not been established

--- for software;

This work was supported in part by a grant from
MounminNet Inc. as part of the Ada.Net project under
NASA cooperative agreement NCC9-16.

PRECEDING PAGE

2. There is a pervasive belief that if it is "not developed

here", it can't be used by "us";

3. Software is all too often developed with respect to a

specific requirement with no consideration given to

reuse in other environments;

4. Many languages encourage constructs that are not

conducive to reuse;

5. Software Engineering principles are not widely prac-

ticed and consequently, requirements and design

documents often are not available with the code; and

6. No widely accepted methodology has been devel-

oped to facilitate the identification and access of

reusable components.

Regardless of the reasons for not developing soft-

ware for eventual reuse, the spiraling cost of new soft-

ware development is mandating an increased interest in

software reuse. It has been estimated that in 1990 alone,

the output of source code will be 15.3 billion lanes of

code [11]. With the minimal effort to reuse existing soft-

ware, it is natural to ask what percentage of this enor-

mous number of lines of code will represent duplication

of effort. It has been estimated that only 30 to 40% of

this code will represent novel applications while 60 to

70% of the code will apply to generic computer tasks

such as data entry, storage, sorting, searching, etc.

Although there are no definitive answers as yet to

the software reuse problem, there is substantial ongoing

research on the problem. One area of research is to iden-

tify characteristics of software components that enhance

the reuse potential of the component in terms of its bind-

ings to other modules [3]. Another area of research is to

identify techniques that can be used to translate a soft-

ware component that has marginal reuse potential to one

that can be easily incorporated into a larger system. A

third research arta relative to software reuse that has

been extensively studied is that of identifying metrics

that measure software complexity. An example of this is

9O

BLANK

Second International Conference on Software
Engineering and Knowledge Engineering. Skokie, IL,
June 21-23, 1990, pages 90-97.

NOT FILMED

McCabe's Complexity metric. A very recent area of re-

search in software reuse is that of the problem of classi-

fying software in order to identify and access the soft-

ware [4], [12]. The most promising classification method

for software reuse is the Faceted Classification System.

This methodology has been studied extensively by

Prieto-Diaz and forms the basis for the methodology

presented in this paper.

] ,2. Faceted Classification

The facetedclassificationmethodology,as studied

by Prieto--Diaz,beginsby usingDomain Analysis"to

derivefacctedclassificationschemes ofdomain specific

objects"[13].Thisprocessrelieson a librarynotion

known as Literary Warrant. Literary Warrant collects a

representative sample of titles which are to be classified

and extracts descriptive terms to serve as a grouping

mechanism for the tides. From this process, the classifier

not only derives terms for grouping but also identifies a

vocabulary that serves as values within the groups.

From the software perspective, the groupings or fac-

ets become a taxonomy for the software. Using Literary

Warrant, Prieto--Diaz has identified six facets that can be

used as a taxonomy [14]. These facets are: Function, Ob-

ject, Medium, System Type, Functional Area and Setting.

Every software component is classified by assigning a

value for each facet for that component. For example, a

software component in a Relational Database Manage-

ment System that parses expressions might be classified

with the tuple

(parse, expression, stack, interpreter, DBMS,).

Thus, the Function facet value for this component is

"'parse", the Object facet value is "expression", etc. Note

that no value has been assigned for the Setting facet as

this software component does not seem to have an appro-

priate value for the Setting facet.

The software reuser locates software components in

a faceted reuse system by specifying facet values that are

descriptive of the software desired. For example, if we

are using Prieto--Diaz's facets, suppose that we wish to

find a software component to format text. We might

query the system by constructing the tuple

(format, text, file, file handler, word processor, *).
Note that the asterisk for the value for the Setting facet

acts as a wild card in the query which indicates that there

is no constraint on that facet. If the query results in one

or more "him", then the reuser chooses from the hits the

particular software component that best fits the desired

need. The problem arises if no hits are obtained or if the

software that is idenLificd is not appropriate to the needs

of the reuser. One solution is to weaken the query by

relaxing one or more constraints by replacing a facet
=

value with a wild card. For-example, if the Functional __
Area facet has the least significance to the required need,

the reuser could again pose the query with the tuple

(format, text, file, file handler, ", *).]i

This process of weakening the query continues until a

suitable component is retrieved.

An aitemative method to continue the search after

initial query is known as the method of "conceptual

closeness." In this method, pairs of facet values for the -
same facet have numeric values associated wiuh them ,.=

that in a sense measures their "degree of sameness." For

example, the two facet values "delete" and "remove"

would be very close in meaning and hence would have aIW

metric value close to 0 indicating their semandc close-

ness. However, the two values "add" and "format" for
=

Function have little in common and hence would have a"

closeness value nearer to 1. In this method, t.b,esystem _

assumes the responsibility for continued searches by
modifying the query by replacing facet values with val-

ues that are "close" in meaning as determined by the _-

closeness metric. For example, it"the facet value "editor _,,j

is closer to "word processor" in terms of the metric than

any other value in any facet, then the system poses the

query with the modified tuple

(format, text, file, file handler, edi:.or, *)
and continues in this manner until a hit is ob_n*,_[.

Although this appears to be a reasonable solution tow

the problem of continued searches, the difficult)' lies in
the need to assign meaningful closeness values to pairs

facet Values. With a large collection of values, this is a m

daunting task. However, one solution is suggested by

adapdng the work of K_naskal [8] to the conceptual close--=-

ness problem. In this method, a metric is assigned to

pairs of values based on user acceptance of modified ,_

queries. The method requires the use of a two dimen- ,.

sional matrix for each facet indexed by the facet values

themselves. For example, if an original query tuple con-

sistingof ,-

(format,text, file, file handler, word processor, ")
failed to achieve a hit and the user later accepted a corn -_'

ponent with the query tuple i

(format, text, file, file handler, editor, *),
the matrix corresponding to the Functional Area facet
would have one added to the two matrix cells corre-

sponding to the entries for "word processor" and "edi- m
m

J

91
i

J
!

tor". Now ff N is _ of the total of the cell values in the

-- matrix, then the distance between "word processor" and

"editor" is defined to be 1 - (ceLl value)/N where the cell

value is the value in either of the entries corresponding to

"- the pair "word processor" and "editor". It is clear that

. this method requires a large and patient user group in
_ order to establish viable metric values.

"_-_ The facetedclassificationmodel thatwc shallde-
L

_-- scribeintbenextsectionisbasedon themathematical

notionofa lattice.The definitionofa lattic_requh'esthe

_ conceptofapartialorderingon aset.Thus,apartialor-

- dering< on a setA isarelationdefinedon A thatsaris-

tiesthreeconditions,namely:

a. Reflexive:forallx inA, x < x;

-- b. Antisymmetric:forall×,y inA, ifx < y and y < x,

thenx = y;

_ c. Transitive:forallx,y and z inA, ifx < y and y < z,
then x < z.

For example, the arithmetic comparison "less than or

equal" is a partial ordering on the Natural numbers. An-

other example is the subset relation defined on the power

set of a set. It should be noted that a partial ordering on a

set does not guarantee that any two objects in the set can=

be compared using the partial ordering. For example, two

arbitrary elements in the power set are not comparable in

.,g the sense that one need be a subset of the other.

A lattice is a set A on which is defined two binary

_ operations, A (meet) and v (join), which satisfy the fol-

lowing:

a. Idempotent: for any in A, x ^ x = x and x v x = x;
- =

b. Commutative: for any x and y in A, x ^ y = y ^ x

_- andxvy=yvx;

. c. Associative: for any x, y and z in A, x ^ (y ^ z) = (x

_ ^y) ^zandxv (yv z) = (x v y) v za

d. Absorption Law: for any x and y in A, if x < y, then

-- xvy=yandx^y=x.

_. AdditionaUy, if for any x, y and z in A, x ^ (y v z) =

(x ^ y) v (x A z) and x v (y ^ z) = (x v y) ^ (x v z), we

say that the lattice is distributive. For example, the power

set with intersection as the meet and union as the join

_ forms a distributive lattice using the subset partial order.

Let < be a partial ordering on a set A. If X is a subset

-- of A, we say that an element a in A is a lower bound of X

_ if a < x for every x in X. A Greatest Lower Bound (GLB)

of X is a lower bound b of X with the property that if a is
any other lower bound of X, then a < b. It is clear that if a

_ GLB exists for a subset X of A, then it must be unique.

For example, any subset of elements in the power set has

a GLB consisting of the intersection of all elements in

the subset. In a lattice, any two elements have a GLB

which is just the meet of the two elements, i.e. fix and y

are in a lattice A, then x ^ y < x and x ^ y < y and if z is

any lower bound of both x and y, then z < x ^ y.

There is a dual to lower bounds which is the notion

of upper bounds. An element a is an upper bound for a

set X if x < a for all x in X. A Least Upper Bound (LUB)

of a set X is an upper bound b such that ff a is any other

upper bound, then b < a. For the example of the power

set, a LUB for a set X is the union of all the elements in

the subset. In a lattice, any two elements also have a least

upper bound which is just the join of the two elements.

Thus, for any two elements x and y in A, x < x v y and y

< x v y and if z is any upper bound of both x _d y, then

xvy<z.

We nots that if A is a set with a partial ordering <

such that any two elements have a GLB and aLUB, then

the set is a lattice where the meet of any two elements is

the GLB of the elements and the join of any two ele-

ments is just the LUB of the elements.

1A. Subt_'pcs and Inheritance

The popularity of the Smalltalk programming lan-

guage [9], with its object orientation and built-in type

inheritance, has resulted in a flurry of research in object-

oriented database systems. An obj_t---oriente,:l database

system is one that is organized around objects and which

communicates through message--passing. O;erations

(termed methods) are associated with each object in a

database; some of these operations are bound to specific

types of messages for that object. Most message-passing

systems are not strongly typed, but rather perform run-

time type checking. This is done primarily to support

rapid prototyping of applications. Deferring the binding

of an object or message to a type until run-time reduces

the amount of effort needed to begin exercising an appli-

cation, but it also requires a run--time system that can

handle the errors that may arise.

The object classes in an object--oriented database are

organized into a partial ordering. Object classes inherit

attributes and methods from their ancestors in the order-

ing. Single inheritance schemes restrict a given object

class to at most one immediate ancestor in the partial

ordering. Multiple inheritance schemes allow a given

object class to have any number of immediate ancestors

inthe partial ordering. Cardelli [5] formalizes some of

the semantics of multiple inheritance.

92

Object--orienteddatabasesystemshaveanumberof
designgoals,someconcerningtyping,butotherscon-
cerningperipheralissues(suchasrapidprototyping).
Thetypesemanticsof object-orientedsystems(including
inheritanceandsubtyping)ispresentinothersystems

which are not based upon message-passing (e.g., Mor-

pheus [7], Galileo [2]). Such systems ate strongly typed,

and hence, as Cardelli and Wegner [6] argue, can pro-

duce more efficient and reliable applications.

Horn [10] introduces the notion of conformance,

allowingone typeinstancetobe treatedasifitwerean

instanceofanothertype.Inalimitedsense,thisiswhat

happenswithinheritance,butconformanceismore gen-

eral.Inheritancerequiresthatthistreatmentonlybe al-

lowed when moving up thctypehierarchyorlattice.

Inheritanceusesapartialorderingoftypcs(bysubtype),

plusan implicitdefinitionofexistencedcpendencicsbe-

tween agiventypeand itsancestors.Conformance can

holdforarbitrarytypes,independentofany typeordering

scheme. Such anotionisclearlysuperiortohierarchies

or lattices for t_e-related que_' languages, where int_r-

mediat_ results (derived from existing types, but not part

of the database schema) need to be manipulated.

Inheritance-based systems are, in some sense, navi-

gational. A user querying an object--oriented database

must be aware of the inheritance structure of that specific

database, just as a user querying a network database must

be aware of database structure. Because of their non-

navigational characteristics conformance-based models

promise to gain prominence over inheritance-based mod-

els, just as relational models have over network models.

2, The Reuse TvI)¢ Lattice _z
w

Figure 1 shows the general structure of the reuse

type lattice. At the top is 7-, the special universal type

Any value conforms to the universal type. At the bot_

is .t. the void type. These two special types ensure that

any two types in the lattice have a least upper bound an--,

a greatest lower bound, respectively. Between the uni._

versal and void types appear the upper and lower bounds

for the two type constructors facet and tuple. Facet0 __

characterizes the notion of the empty facet type; it con_

tains no values, but is still a facet. Likewise, Facet char-

acterizes the notion of the set of all possible facet valu_

The dotted line between them indicates that an arbitrary--
number of types may appear here in the lattice. For ex-

ample, figure 2 shows the sublattice for facet sets for LI

examples in section 1.2.

The ruple sublattice has a similar structure. At the

top is the empty tuple type {}, characterizing a tuple w_

I

i

Facet<) { }
!

!

, W
!

!

Facet tu_)le

!
m

Figure 1. The reuse type Lattice W

Faceto

Functiono Ob ecto Mediumo SystemTypeo FunctionalAreao Settingo
!

!

I

!

I

!

!

!

!

Function Object Medium SystemType FunctionalArea Setting

Facet -, .

Figure 2. The Sublatdce of Facct Sets

93

U

m

W

il

!

7

W

L

Ta,_'

= ,

m

no facets. At the bottom is tuple, the tuple t}'pe with all

possible facets.

2.1. Facets vs. Facet Value Sets

Traditional retrieval of individual facet values relies

upon maximal conjunction of boolean terms for retrieval

of matches on all facets and maximal disjunction of

boolean terms for matches on any facet of an expression.

In order to fit the notion of facet into the type lattice, we

look at sets of facets. A set of facets corresponds to a

conjunctionon allof the facets comprisingtheset.Each

set occupies a unique position in the type lattice. We

handle disjunction by allowing a given component to

occupy multiple lattice positions. Matching occurs on

any of the positions, providing the same semantics as

disjunction.

Facet values are equivalent to enumeration values.

We attach no particular connotation within the type sys-

tem h_ a particular facet value. Values are bound to some

semantic concept in the problem domain.

The subset relation is our partial order. The least

value of this portion of the lattice is the set of all facet

values from all facets in the problem domain, denoted by

the distinguished name Facet. The greatest value of this

portion of the lattice is the empty set, denoted by the dis-

tinguished name Faceto. The union operator generates

the _eatest lower bound. The intersection operator gen-

erates the least upper bound.

3. Tb_"peInference Rules

We begin with a brief remark concerning notation.

In the reference rules that follow, the symbol A repre-

sents an existing set of assumptions. A always contains

the type information generated by the database schema

which implements the repository. It is occasionally nec-

essary to extend the set of assumptions with some addi-

tional information. A.x denotes the set of assumptions

extended with the fact x. A t- x states that given a set of

assumptions A, x can be inferred. Inferences above the

horizontal line act as premises for the conclusions, the

inferences below the horizontal line. An expression is

well-typed if a type for the expression can be deduced

using the available inference rules, otherwise it is ill-

typed.

3.1. Domain Interval Subtvp_ing

We adapt the notion of a domain interval [7] to for-

realize our notion of facet value sets. In [7] a subtype

was smaller than its supertype; here the reverse is true, a

subtype is a larger collection of values than its supertype.

94

A domain interval is a type qualification that explic-

idy denotes the valid subrange(s) for a base type. As-

Sume that t is a base type ordered by <__(the ordering may

be arbitrary). A domain that is, (inclusively) delimited by

two values, a and b, is denoted th..._. A n0n-inclusive

lower bound is denoted a" and a non-inclusive upper

bound is denoted by b-. Intervals made up of more than a

single continuous value i'a.nge are denoted by a set of

ranges, for example, k,...b._...,t,_ denotes the interval that
includes the subinterval a through b inclusive, the subin-

terval c through d inclusive, and the singleton value e.

The singleton range e is equivalent to e...e. When we

use such notation we intend that a < b and c _<d, but not

necessarily that b _<c or d < e. An empty pair of brack-

ets, t_, denotes an empty interval, i.e., one which con-

tains no elements. In our particular application, the base

types are fmit_ sets of enumeration (facet) values.

Premises concerning membership of interval bound-

ary values (e.g., m and n in (1.1) and (1.2)) are assumed

to be part of the assumptions, and will not be explicitly

mentioned after this. Rule (I.1) provides for subtyping a

AI-me t

AI-ne t

A I- mS n (1.1)

A r- t 5 t(m...n}

subrange of some type t; (1.2) does the same for two sub-

AI-met

A I- m'e t

AI-net

A t- n' _ t (1.2)

A _-m'< m..< n__<n'

A I- t(m,...n,) 5 t(m...n)

ranges of some type t. Rule (1.3) extends subtyping to

A I- t(m_...nl) q-t(m:...n:)

A I- t(rn, ..tt_) 5 t(m,'...n;) (1.3)

A k t(mt...nt mi..ni)_ t(m:...nt',..., _'.._a:)

domain intervals, where each subinterval in the subtype

is asubtype of some interval in the supertype.

The following rules are used to combine ranges in

domain intervals. In rule (1.4), two ranges in an interval
A _-x : t(.... L..b, b...c,...)

A b x :t(.... a...c,...) (1.4)

that share a common endpoint can be combined into a

single range. This 4can also be done when one end point

is inclusive and the other is exclusive (rules (1.5) and

(i.6)). Overlappingrangesaremergedintoasingle

(1.5)
Ai-x't(.... a...b-,b...c)

A I- x "t(..., a...¢, ...)

A I- x • t(.... a...b,b'...¢,...)
(1.6)

A)- x • t(.... a...c,....)
range that uses the minimum of the two lower bounds as

the new lower bound and the maximum of the two upper

bounds as the new upper bound in rules (1.7) and (1.8).

A I- x • t(.... ,...e, b..d. ...)

AI- a <b<c< d (1.7)

Al-x't(.... a...d)

AF-x':t(.... a...d,h..c)

A F- t(a...d) 5 t(b...c) (1.8)

AI-x't(.... a...d)

The next two inference rules deal with unary domain

values. And the last two deal with complete intervals.

AI- x't(.... a,...)

(1.9)
A I- x " t(.... a...a....)

A I- x " t(.... a...a, ...)

(1.10)AI- x " t(.., L, ...)

A_-x;_

A F-x • t(......) (1.11)

A I-x't<_..**....)
(1.12)Al-x't

ha order to establish the type of the result of an op-
eration such as union, some notion of domain interval

union is needed. If M and N are two intervals over the

same b'pe, then M _ N is constructed by merging the

two sets of ranges making up the intervals, and using the
domain inference rules described above to reduce the

result.

A I- x" t(M v N)

A I- x "tiM , 1_ (1.13)

In a similar fashion, for two intervals M and N over

the same type, their intersection, M c_ N, can be con-

structed by selecting only those ranges which are com-

mon to both domain intervals. The domain inference

rules are used to decompose the given ranges into sets of

disjoint ranges and common ranges. The set of common

ranges makes up the intersection interval.
A _ mb < na

A 1-t((m mb)c_ (n, ...nb), M>= t(M) (1.14)

A t- ma < na -< mb < nb

A I- t((m, ...m,)c_ (n nb),M) = t((n...a-r_),M) (1.15)
r

A F rna-<na-< nb--<mb W

(1.16)
A I- t((m, ...rnb)c_ (n.... n_), M) = t((n, ..a%),M)

3.2. TuNe Subtwin._

This collection of inference rules explicitly types the
tupies that classify components. We view a tuple r to t _

of type record, {t, t,}. The type t, must be a facet "!

type. The empty tuple (i.e., the tuple containing no fat-__
ets) is of type {}, the tuple type with no components.

The order in which types appear is not arbitrary, since _m,

position is used to distinguish facets.

Inference rules (2.1) and (2.2) allow for the defini_
tion of a tuple and the extraction of an attribute from a

tuple. If ea through e. are type expressions of type tt

Alet=tl i_I

A F e n = tn (2.?'

A.(r = {el , e,}) _-r" {tl,..., t_} ,7.--

through t. respectively, then the tuple constructed from

them will be of the b'pe resulting from the record con- =

struetor ' {}' applied to those types. We use type expres-

sions to allow construction of attribute types without

requiring the earlier definition of all the types needed.
Note that the same syntax is used to denote both the defi-

nition of the tuple and its type. If attribute i in tuple r kv_

of type t then the result type for the component extrac_,,
r.i is t.

A I-r" {tl...tn} ----

Al-l_<i_<n (2.2_
A I- r.i't

New tuple types are constructed from existing tupl_
types using the tuple constructor '&' which accepts two

tuple types and returns a tuple type containing all comw_

nents 6fboth argument types. ,_

A I- Tt " {tl, ... ,tin} _m
A F-T2" {tin+l, ..., tn}
A }" 1 _< rn < n (2.3)I"

A I- T 1 & T2 = {tl,..., tn}

Rules (2.I) and (2.2) give the type semantics for

construction of tuples from attributes and for extraction

of an attribute from a tuple. Rule (2.4) characterizes the:;;;/

notion of subtype between two tuples: One tuple is a

subtype of'another if it has all of the attributes of the

other (attributes common to both tuple types must be of_

the same type in both tuple types), and possibly some

additional attributes. This may seem contrary to the in-
il

95
,

J

A}-tl

Al'tm

AI-tn
At- l<_m<_n

(2.4)

A {tl, ..., ... ,t,) .<[tl, ..., tin)

tuitive notion of subtype being a restriction of a type.

Consider, however, that an instance of a subtype must be

able to be used as an instance of its supertype, and thus

must contain all of the supertype's attributes.

Rule (2.5) extends record subtyping to handle the

AI- 1<m_<n

A_-t'lStl

: (2.5)
A I.- t'm 5 tm

A 1-{t 1,-.., " tn] < {tl, , tin}• t ITD °''_' - "'°

___ situation where a component of the subtype is a subtype
of the corresponding component in the supertype. Infer-

ence rule (2.4) required that the corresponding atuibutes

be of '.he same type. Rule (2.5) generalizes (2.4) by deal-

ing with subtyping of the attributes in addition to the re-

spective record types.

4. Ouerying the Reposito_

The repository is partitioned by structural similarity

_i (package, function, etc.). Each partition is associated

with a set of facets which characterize and classify the

- members of the partition. The particular facets and the

..- number of facem associated with a partition varies as

needed to adequately characterize it. A given facet may

- - be unique to a partition, or it may be shared by many

.,.. partitions. The function facet from section 1.2. is a good

example of a facet likely to be shared by a majority of

_; : partitions in the repository.• l

,_- Each partition instance has one or more lattice verti-

ces that correspond to the sets of section 2.1. There is

__ always the primary lattice vertex corresponding to the

tuple of facet value sets characterizing this component as

a member of the partition. Additionally, there may be

zero or more secondary lattice vertices corresponding to

--" alternative characterizations of the component or eharac-

--- terizations of subcomponents contained within this com-

ponent.

4.1, Repository Structure

-- Two persistent storage areas comprise the actual

repository: a set of text files, and a set of database rela-

-- tions. The text fries contain the body of the components

themselves, or descriptions of them (in the case of a

commercial product described in a local repository). The

database relations store the lattice vertices.

Each database relation corresponds to the lattice ver-

tex characterizing a particular repository partition. The

type of the relation is then the type of the partition, which

is the least upper bound of all the tuple types of the com-

ponent vertices comprising the partition. Efficient algo-

rithms for lattice operations such as LUB are described

in [I].

There is also a relation made up of facet value/syno-

nym pairs. This relation is described in section 4.2. Ad-

ditional relations may also be present if there are ahema-

tive characterizations or subcomponents characteriza-

tions not equivalent to some primary partition characteri-

zation.

4.2, Ouch, Evaluation

A query is a boolean expression containing predi-

cates and the operators and, or, and not. A predicate is

simply a constant of type tuple. When a user issues a

query, the query evaluator t-u'st treats all of the facet val-

ues in the query as synonyms and replaces them with

actual facet values from the value/synonym relation. For

example, "database," "databases," "dam base," and "dam

bases" might all be replaced with "database." The evalu-

ator then locates all of the relations in the database whose

type conforms to some predicate of the query using the

inference rules of section 3. Specific tuples which con-

form to some predicate are then retrieved from the con-

forming relations (once more using the inference rules).

The result is then a set of component references, which

can be optionally retrieved from the text storage area.

4.3. Browsing as Retrieval of Subt _vpes

Treating a query as an editable entity in the user in-

terface provides a straightforward browsing tool. For

example, attaching facets to a query comprised of a sin-

gle mple makes the query less general. Fewer and fewer

partitions conform to the tuple type. Specifying exactly

those facets found in a given partition restricts retrieval

to only that partition. Over-qual_cationresults in

empty retrieval.

Removing facets from the query tuple makes the

query in tum more general. Specifying an empty tuple

rcsuhs in all partitions of the repository conforming to

the type of the query tuple (all record types are subtypes

of the empty record {}).

96

u

The reuse architecture described here uses the

proven method of faceted classification as a starting

point for a retrieval mechanism providing both precise

characterization of components and flexible specification

of queries. Its simple user interface _ncapsulates a data

model founded in formal lattice and type theory.

6.References

[1] H. Ait-Kaci, R. Boyer, P. Lincoln, R. Nasr, "Effi-

cient Implementation of Lattice Operations," ACM

Transactions on Programming Languages and Sys-

tems, vol. 11, no. 1,p. 115, 1989.

[2] A. Albano, L. Cardelli, and R. Orsini, "Galileo: A

Strongly-Typed, Interactive Conceptual Language,"

ACM Transactions on Database Systems, vol. 10,

no. 2, p. 230, 1985.

[3] V.R. Basili, H. D. Rombach, J. Bailey, A. DelLs, F.

Farhat, "Ada Reuse Metrics," Workshop Proceed-

ings: Ada Reuse and Metrics, Atlanta, Ga., June

15-16, 1988.

[4] G. Booch, Software Components with Ada, ben-

jamin/cummings, Menlo Park, California, 1987.

[5] L. Cardelli, "A Semantics of Multiple Inheritance,"

in Semantics of Data Types (Proceedings Interna-

tional Symposium Sophia-Antipolos, France, June

1984), Springer-Verlag, Lecture Notes in Computer

Science, vol. 173, p. 51.

[6] L. Cardclli, P. Wcgner, "On Understanding Types,

Data Abstraction, and Polymorphism," ACM Corn-

puting Surveys, vol. 17, no. 4, p. 471, 1985.

[7] D. Eichmann, Polymorphic Extensions to the Re!a. --

tional Model, Ph.D. dissertation, The UniversitT of W'

Iowa, Iowa City, Ia., August 1989. Also available as

technical report 89---05.

[8] R. Gagliano, G. S. Owen, M. D. Fraser, K. N. K.ing,_

P. A. Honkanen, "Tools for Managing a Library of

Reusable Ada Components," Workshop Proceed-

ings: Ada Reuse and Metrics, Atlanta, Ga., June

15-16, 1988.

[9] A. Goldberg, D. Robson, Smalltalk--80: The Lan.

guage and Its Implementation, Addison-Wesley, m
1983.

[10] C. Horn, "Conformance, Genericity, Inheritance a.-,:_

Enhancement, ECOOP 87-Proc. European Cor.-

ference on Object-Oriented Programming, p. 22.q,
Paris, France, June 15-17, 1987. _

[11] T. C. Jones, "Technical and Demographic Trends in----"

the Computing Industry," Proceedings of the 1983

DSSD Conference, Topeka, Kansas, October, 1983. _

[12] R. Prieto-Diaz, "Domain Analysis for Reusability,"

Proceedings of COMPSAC 87, Tokyo, Japan_ Octc- --
ber, 1987. m

w,
[13] R. Prieto--Diaz, "Facted Classification and Reuse

Across Domains," Unpublished Draft. __
[14]R. Prieto--Diaz, P. Freeman, "Classifying Software w

for Reusability," IEEE Software, vol. 4, no. i, p. 6,

1987.

U

__ = ,m

W

w

97

M

W

W

II

m
!
I

r _

L_

w

r

L

L

t-_

t_

w

i. JL

lt_J_

_-11 r

v

LE _
_m

q_ F

L

E L i

tam to the success and utility of a user interface incorpo- can be deduced Using the available inference rules, orb-
rating conceptual closeness, erwise it is ill-typed.

2.1.3_ LalIice-BasM Facetcd Classification

Eichmann and Atidns [6] described an approach to fac-
etcd classification that focused upon a structural frame-
work (type lattices) as an alternative to explicit close-
ness weights.Eachcomponentpossessedoneormore
tuplescharacterizingit,eachcomprisedofanon.-empty

setoffacetvalues.Usersposedqueriesastuples,and

reuse candidates were remeved based upon their con-
formance to the query mple.

2.2. Type Signatures

An algebraic specification contains both a syntactic
characterization of a component (the signature) and a
semantic characterization of a component (the axioms).

Algebraic specifications therefore are aptly suited as
formal d_scdptions of software components.

Traditional efforts in reuse concentrated on the struc-

tural interfaces between components [1, 2], and hence
solely on the signature portion of the specification. This
proved less than adequate for component discrimina-
tion, in the face of numerous candidate components, all

with the same interface, and dkecfly prompted the work
in faceted classification described above.

2.3.Type Inference

Recentresearchinprogramminglanguagehasresulted

inanumber oflanguagesthatarcstronglytyped,and

yct,arcflexiblcand rcmarkablcexpressive,(e.g.,ML

[13]).Such languagesrelyheavilyon inferential
.......... r-

mechanismstoensuresafecomputauon[5,12].The

conceptofconformanceisparticularlyrelevanttosoft-

warerepositoryquerymechanisms[Il].Conformance
allowsonetypeinstancetobca-catedasifitwereanin-

stanceofanothertype,andcanholdforarbitrarytypes,

regardless of the type ordering scheme (e.g., inheri-
tance).

Typeinferencenotationorganizesaroundasetofinfer-

encerules,comprisedofsetsofpremisesand conclu-

sions,separatedbyahorizontalline.ThesymbolA rep-

resentsan existingsetofassumptions.A alwayscon-

rainsthetypeinformationgeneratedby thedatabase

schema implementing the repository. A.x denotes the
set of assumptions extended with some fact x. A F x

states that given a set of assumptions A, and the cur-
rently defined set of inference rules, x can be inferred.

An expression is well-typed ifa type for the expression

3. A Hybrid Approach

The approachadvocatedherecombinesthesemantic

flexibilityoffacetedclassificationwiththestructm-al

formalityof typesignatures.We accomplishthis

dtroughtheincorporationoffunctionand abstractdata

type(ADT) definitionsintothetypelamceof[6].

3.1. The Type Lattice

As shown in figure I, there are four principle sublaaices

comprising the complete type lattice, corresponding to
the types gcneratedby facet sets, tuples, functions and
ADTs. In addition, the universal typel T, and the void

type, 1., ensure that a least upper bound and a grcat_st
lower bound, respectively, exist for any two types in the
lattice. The usual built-in types (e.g., integers, strings,

etc.) are not shown,in order to simplify the presenta-
tion. In principle, they can be specified as ADTs if
needed.

T

W

W

B

_

l

H-
i

D

t
!
i

J

Faceto 3_ --) T 3t.t {} __----
! ! ! !
! ! ! !

! ! ! !

Facet T--) .1. ADT tuplc

Figure 1.

Faceto characterizes the empty generic facet type; it
contains no values, but is still a facet. Likewise, Facet ,_,
characterizes the set of all possible facet values. The

dottedline indicatesan arbitrary number ofintermedi- _-_
ate types.

llW

The tuple sublattice has a similar smacture. At the top is
the empty tuple type, { }, characterizing a type with no

components. At the bottom is Tuple, the tuple type with i:
all possible components.

r cilba e--b6U a/.a-aix,ve by .L _ "1-,the func-
tion type with a void domain and universal range, and w,

are bounded below by T _ 2., the function type with a
universal domfiin and void range.

i

237

v

%L

r

m_

L

qt=,

=lW

w

m

Imp

ADT typesareboundedaboveby3_.e,theabstracttype

denotingaahiddentype,c,withnoinformationorop-

erationsavailable,andareboundedbelowby ADT, the

type denoting all possible types with allpossible opera-
dons.

3.2. Inference Rules

3.3.Facets

As in[6],we characterizefacets as the inverseofour

usualnotionofintervalsubtypes;a facetsubtypede-
notesalargercollectionoffacetvaluesthandoesitssu-

pertype.Inferencerule(I)formalizesthisfora com-

pletefacet.

AI-mEt

A l-n_ t
A l-m_<n (1)

A I-t _<t0n...n)

Inference rule (2) does likewise for two singleton inter-
vals, and inference rule (3) for two arbitrary collections
of intervals.

A_met
A Fm'E t

AFnet
A Fn'_ t (2)

A _m'_<m_<n_<n'

A _"t(m:..n5-<t#n...n)

A _t(._.l...nl).<t(ml:..ni5

A _t(=,...,,)_t_,:..,:_ (3)

A F [(ml...nl _i...ni)_ t(ml'...nl'. m,'...n, _)

A number of inference rules no presented here address
the reduction and manipulation of intervals [6].

3.3.1. Tuples

We view a tuple r to be of tTp¢re.cord,{a, :h a.: t. },
whereattributeaAso ftypet_.Weassumethatt_issome facet,

function,orADTtype.Sinceattributesarelabeled,compo.
nentsmayappearinanyorder,andtwotypesareassumedto
be equivalent iftheyonlydifferin theorderoftheirrespec-
rive attributes.

Inference rule (4) characterizes subtyping for tuples.
Informally, one tuple type is a subtype of another if it
has all of the attributes of the other (and possible more),
and for those common attributes, the type of a given at-
tribute in the tuple subtype must be a subtype of that at-

tribute's type in the tuple supenype.

A_-l_<m_<n

A FI'] _<tl

A vt',. __t= (4)

A V [il : t'l i= : t'_ i. : t.}
{i : tl i= : t=)

Inference rules (5) and (6) support definition of tuple

constants and extraction of an attribute value, respec-
tively.

A Fel=tl

A ve_= t, (5)
A.(r = {i, = el i. = e..})

)-r: {it:t, i.:t.}

A) r : {il : t,...i, : t.}

A '- 1 -<j_<n (6)

A I-r.ij : t i

3.3.2. Functions

Function types are useful both for characterizing pro-
grams and for characterizing the operations of ADTs.
Inference rule (7) characterizes the usual notion of

lambda abstraction, where x is the parameter, t' the pa-
rameter's type, e is the body of the function, and t the
type of the function's result.

A,x :t'_e:t
(7)

A_X(x:t')e :(t'_t)

One function type, s --¢ t, is a subtype of another, s' ---)t'.
if the subtype function accepts the entire domain of the
function supertype (i.e., s' -<s), and produces a range
contained in the supertype range (i.e., t -<t'), as shown in
inference rule (8).

A_s'_<s

A _t _t" (8)
A v s--, t _<s'--, t"

Function subtyping seems a litde strange at fast, but a
simple example helps. Assume that f is a function type
(1..4) _ true and g is a function type (2..3) -¢
(true_false). Function type f is a subtype of g. Any in-
stance of f can always replace an instance of g in an ex-
pression without effecting the type-safety of the ex-
pression. The instance of f handles at least the values
the supertype function does, and produces no more val-
ues than does the supertype function.

Inference rule (9) characterizes the type of the result of a

function application; if the expression supplied as an at-

238

gument is of the proper type, then the result of the func-
tion applied to that expression will be well-typed.

A I-e : (t' --->t)

A re': t" (9)
A vc(e'):t

Inferencerules(I0)and (II)definetypeinferencefor

existentialtypes[4].An existentialtypeconsistsofa

typevariablea,representingthetype,packagedwith

some number(j_...j=)ofinstancesofthetypeand/or

operations over the type.

A l- el : sl It/,
: (10)

A I-_: s,,[¢,

A l-pack (a : t in (jl : sl j," s,))

(e_..... c_):3a.(jl•s_..... j. :s.)

A I-e: 3b.(jl"s).....j,:s,)

A.(x'(jl:sl j.'s_))l_le':t (II)

A l-open e as x [a] in e' : t

A given expression e_is of type s, when t is substituted
for a in s,, and serves as the implementation of the value

or operation labeled j_ in the abstract type. This substitu-
tion results in a concrete type (i.e., one with no type vari-
ables in it) for the expression. The substitution type t
serves as the representation of the abstract type, denoted
externally by the existential variable a. The actual rep-
resentation and the implementations of the operations
are not visible e._ternally.

The pack o.perauon constructs an instance of an abstract
type, and encapsulates its representation. The open op-

eration performs the converse, binding an abstract type
variable to a concrete type, and evaluating some expres-
sion in the context of the (now concrete) abstract type.

Subtyping of ADTs derives from subtyping of the type
parameters for the abstract type. Inference rule (12)
characterizes subtyping of two instances of abstract
types.

A.(tl 5 t2) I- (t -<t')
(12)

A t- (3(tl _<t2).t) .<(3(tl _<t2).t')

Note that in addition to providing subtyping of two

ADTs, rule (12) also supports subtyping of two in-
stances of the same ADT.

For an example of the former, 3"I" 3('1"-<T').T" denotes

an existential t)'pe T" generated by a type parameter T,
which must be a subtype of the existential type T'. Since

instances of abstract types are cross products of in-

239

stances and operations, T would be a subtype of T'
through additional operation,.--An c_'nple of this ap-
peared in [17], showing stacks and dequeues as sub-
types of queues.

For an example of the laaer, stack of integero__o) is a
subtype of stack of integer.

4. The User Interface

A query is a boolean expression containing predicates

and the operators and, or, and not. A predicate issimply
aconstantoftypemple.When auserissuesaquery,the
query evaluator ftrst treats all of the facet values in the
query as synonymsand replacesthemwith actualfacet
values from a value/synonym relation. For example,

database, databases, data base, and data bases might
all be replaced with database.

The evaluator then locates all of the relations in the data-

base whose type conforms to some predicate of the
query by testing the tb'pe of each relation in turn, using
the inference rules previously described. The query lat-
tice space for a given predicate is bounded above by the
predicatetype itself, and bounded below by the patti tion
tuples that conform to it. For each user-specified predi-
cate, the evaluator forms the disjunction of conforming
relation tuples (with variables in each position) and then
substitums the conjunction of the disjunction and the
new predicate in place of the original, user-specified
predicate. The result of evaluating this query is then a
set of component references for display and optionally,
retrieval from the text storage area.

Note that since tuples of more than a single type may be
displayed to the user, the query language is polymo-

rphic in one of the manners discussed in [7].

il

_aala

4

t=_aqP

g

r

m

5. Discussion -_
Wit

Thework describedhere isanotherina seriesofexperi-
mentalu.se_interfacesforsoftwarereuserepositories.

Our initialeffortsconcentratedspecificallyon provid- m_

ingsubstructureforfacctedclassification[9].Thisap- ,_

proachreliedonlyupontheexpertiseoftheclassifierin

populadngtherepository,and assuch,sufferedfrom _,-.-_f
what we refer to as thevocabulary problem. _m

The interface described here ameliorates the situation
._

by supporting as _ of the query tuple the slx_ificia-
tion of a formal interface structure to which the compo- ,w
nents of interest must conform.

W

W

I
m
m

u

7

r

.Z--\ ¸

't_,"

-r/. _

W

A parallel effort exploring the role that algebraic speci-

fication can play in repository retrieval appears in [8].

This work is concerned particularly with retrieval over

type signatures and behavioral axioms.

6. References

[1] J. Addns, private communication, 1989.

[2] T.J. Biggerstaff and A. J. Perils, Software Reus-

ability, vol. I - Concepts and Models, Addison-

Wesley, New York, NY, 1989.

[3] T.J. Biggerstaff and A. J. Perils, Software Reus-

ability, vol. 2 - Applications and Experience, Ad.

dison-WesIey, New York, NY, 1989.

[4] T.J. Biggerstaff and C. Richter, "'Reusability

Framework, Assessment, and Directions," IEEE

Software, vol. 4, no. 2, pages 41--49, March, 1987.

[5] L. Cardelli, "Basic Polymorphic Typechecking,"

Science of Computer Programming, vol. 8, pages
147-172, 1987.

[6]

[7]

[8]

[9]

L. Cardelli and P. Wegner, "On Understanding

Types, Data Abstraction, and Polymorphism,"

ACM Computing Surveys, vol. 17, no. 4, pages
471-522, December 1985.

D. Eichmann, P olymorphic Extensions to the Re-

lational Model, Ph.D. dissertation, Dept. of Com-

puter Science, The University of Iowa, Iowa City,

IA, August 1989.

D. Eichmann, "Selecting Reusable Components

Using Algebraic Specifications," Secondlnterna.
tional Conference on Algebraic Methodology and

Software Technology (AMAST), Iowa City, IA,
May 22-25, 1991.

D. Eichmann and J. Atkins, "Design of a Lattice-
Based Faceted Classification System," Secondln-

ternational Conference on Software Engineering

and Knowledge Engineering, Skokie, IL, pages
90-97, June 21-23, 1990.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

E. Guerrieri, "On Classification Schemes and Re-

usability Measurements for Reusable Software

Components," SotTech Technical Report 11:'-256,

SofTech, Inc, Waltham, MA 1987.

C. Horn, "Conformance, Genericity, Inheritance

and Enhancement," ECOOP--87 - Proc. Euro-

pean Conference on Object-Oriented Program-

ruing, Paris, France, pages 223-233, June 15-17,
1987.

R. Milnet, "A Theory of Type Polymorphism in

Programming," Journal of Computer and System

Sciences, vol. 17, pages 348-375, 1978.

R. Milner, M. Tofte,and R. Harper, The Definition

of Standard ML, MIT Press, Cambridge, MA,
1990.

R. Prieto--Diaz, A Software Classification

Scheme, Ph.D. dissertation, Dept. of Information

and Computer Science, University of California,

Irvine, CA, 1985.

R. Priett>--Diaz and P. Freeman,"Classifying Soft-

ware for Reusability," IEEE Software. vol. 4, no.

1, pages 6-16, January, 1987.

J. V. Guttag and J. J. Homing, "The Algebraic

Specification of Abstract Data Types," Acta Infor-

matica, vol. 10, pages 27-52, 1978.

A. Snyder, "Inheritance in the Development of

Encapsulated Software Components," Research

Directions in Object--Oriented Programming. B.

Shriver and P. Wegner, eds., MIT Press,

Cambridge, MA, pages 165-188, 1987.

W. Tracz, ed., Tutorial, Software Reuse: Emer g.

ing Technology, IEEE Computer Society Press,

Los Angeles, CA, 1988.

B. C. Vickery, Faceted Classification: A Guide to

Construction and Use of Special Schemes, Aslib,
London, 1960.

2_0

!w

_w

I

W

m

JiW'

ams_

I

_m

W

Wr

WF

111

m

J

J

IiW

l
mmm

I

m

_r

L

E_

lWl

TI_L_

l-

q_

m

!

closeness metric. For example, if the facet value "'editor"is closer to "word processor".in terms of the met-

ric than any other value in any facet, then the system poses the query with the modified tuple

(format, text, file, file handler, editor, *)
and continues in this manner until a hit is obtained.

Although this appears to be a reasonable solution to the problem of continued searches, the difficulty

lies in the need to assign meaningful closeness values to pairs of facet values. With a large collection of

values, this is a daunting task.

4.2. Lattice-Bas_-Classification _ :_=--- _-_ _ - -_ _ _ " =< -_ _/=

Latd_ faceted classification extends simple faceted classit-cafionby organizing an arbitrary

number of facets and n-tuples into a lattice [5]. As shown in figure 6, there are four sublattices comprising

the complete type lattice, corresponding to the types generated by facet sets, functions, ADTs, and tuples.

In addition, the universal type, T, and the void type, .L,ensure that a least upper bound and a greatest lower

bound, respectively, exist for any two types in the lattice.

Facet0 characterizes the notion of the empty facet type; it contains no values, but is still a facet. Like-

verse,F_..tcharacte_ the _on_th_po_Ieqracet valu_ The dotted Fme_etw_ them

indicates that a number of types appear here in the lattice. In particular, there is a vertex for each member

of the power set formed from the elements comprising the facet. Fi_ 7 shows the lattice for the exam-

ples in section 4.1 expanded to show the sublaldces for each of the fa_-ts. _

Function types =re bounded aboveby .L ---,T, the functiontype with a void domainanduniversal

range,andare boundedbelow by T _ .L, the functiontype with a universaldomainandvoid range,

ADT typesare bounded aboveby 3e._, theabstracttype denotinga hiddentype,_, with noinformation

oroperationsavailable,andare boundedbelow by ADT, thetype denotingall possibletypeswith all possi-
ble operations.

The tuple sublattice has a structure similar to that of the facets. At the top is the empty tuple type, {},

characterizinga _sHthho components. A-tiY_-ubi/ils Tuple_ the i_ietypewi]h/dfi/6ss_bie compo-

11

lIE

m

,=i1"-

!

nents. We restrict comlx)nent types to facet, function, or ADT. Note that restricting queries to only Tuple

(with all and only the Facets appearing as components) and allowing * as a default facet value reduces this

approach to the of Prieto-Diaz.

T

Faceto .L -'> T 3e._ {}

I I I I

I I I I

I I I I

Facet T-+ .L ADT tuple

.L

Figure 6.

-4-

m_

z

---L

,gg_

L_

f.

Faeeto

Function0 Ob ecto Mediumo SystemType0
!

!

!

!

!

!

!

!

!

Function Object Medium SystemType

FunctionalAreao Setting0

FuncfionalArea Setting

Facet

Figure 7. The Sublattice of Facet Sets

4.2.1. Facets vs. Facet Value Sets

Traditional retrieval of individual facet values relies upon maximal conjunction of boolean terms for

retrieval of matches on a/l facets and maximal disjunction of boolean tams for matches on any facet of an

expression. In onter to fit the notion of faoet into thc typc lattice, we look at sets of facets. A set of facets

corresponds to a conjunction on all of the facets comprising the set. Each set occupies a unique position in

the type lattice. We handle disjunction by allowing a given component to occupy multiple lattice positions.

Matching occurs on any of the positions, providing the same semantics as disjunction.

Facet values are equivalent to enumeration values. We attach no particular connotation within tl_ type

system to a particular facet value. Values are bound to some semantic concept in the problem domain.

The subset relation is our partial order. The least value of this portion of the lattice is the set of all facet

values from all facets in the problem domain, denoted by the distinguished name FaceL The greatest value

of this portion of the lattice is the empty set, denoted by the distinguished name Faceto. The union operator

generates the greatest lower bound. The intersection operator generates the least upper bound.

4,2.2. Domain Interval Subtyping

We adaptedthenotionofadomaininterval[4]to formalize our notionoffacetvaluesets[6,5].In[4]

asubtypewas smallerthanitssupertype;herethereverseistrue,asubtypeisalargercollectionofvalues

thanitssupestype.

A domain interval is a type qualification that explicitly denotes the valid subrange(s) for a base type.

Assume that t is a base type ordered by < (the ordering may be arbitrary). A domain that is (inclusively)

delimited by two values, a and b, is denoted t_,...b_.Intervals made up of more than a single continuous value

range are denoted by a set of ranges; for example, t_.._,,...J.,) denotes the interval that includes the subinter-

val a through b inclusive, the subinterval c through d inclusive, and the singleton value e. The singleton

range e is equivalent to e...e. When we use such notation we intend that a < b and c < d, but not necessarily

I) -_ TOI
2) TOI x Integer -@

3) ToIr_ To I:_ _.
4) TOI -_ Integ_er
"5) T_I -_ Boolean

TOI

Figure 9 - _on Partitions

ticularly when a candidate component's author chose misleading operation names. Figure 9 shows the five

operation partitions for figures 1-3 and figure 8.

Singleton operation partitions are unambiguous, since there can be bet a single binding possible be-

tween the query operation and the candidate operation. Hence, there is only a single binding possible be-

tween each of specifications in figures I-3, since each of the partitions contains a single operation.

Operation partitions containing more than one operation are ambiguous, and using (1 l), contribute a

proportional increase in the number of ahemative bindings. Figure g has two operations in operator parti-

tion 4), Top and Depth; hence' the two alternative b_gs discussed above.

6. ConclusiO.f,

Our approach merges traditional vocabulary and syntactic based remcval mechanisms with the formal

semantics of algebraic specification; Nc'_er remeval mechanism in isolation is suff_:_m to comple/ely

address the entire problmn: p_ _ mom_ result of this work was our realb.a_n concerning

the fuzziness of even formal specifications, due m the ambiguity of the rams used in those specifw.afions.

This prompted th¢_-mitiation of work in the al_li_9_ networks to the problem [7].

We are still refining the approach descn'bed in this paper. Two specific mcnues of research include

refining partition equivalence and exploring fragmentary signatures. The current definition of partition

equivalence does not adequately address parametric pol__, and therefore does not handle compo-

nents that are instantiations of generic ADTs as well as it _dles the generics themselves' Fragmentary

signatures, signatures that only partially characterize an ADT, hold excellent promise in supporting the use

of our retrieval mechanism in the incremental construction of software from a mix of newly-written code

and reused components.

References
[1] J.A. B=gs_a J. Hcering, and P. Klint, eds, AlgebraLcSpecification, Addison-Wesley, 1989.

[2] L. Cardelli and P. Wegner, "On Understanding Types, Data Abstraction, and P0Yym0rphlsm_"

ACM Computing Surveys, vol. 17, no. 4, pages 471-522, December, 1985.

[3] H. Ehrig _d B Mahr, Fun_n_ls of Algebraic Specifications 1, Springer-Verlag, 1985.

[4] D. Eichmann, Polyrnorp_ Exte_ns to the Relational Model, Ph.D. dissertation, Dept. of Com-

puter Science, The University of Iowa, Iowa City, IA, August !989.

[5] D. Eichmann, "A Hybrid Approach to Software Repository Retrieval: Blending Faceted Classifica-
tion and Type Signatures," Tlu'rd International Conference on Software Engineeri.g a_ Knawl-

edge Engineeri.g, Skokie, IL, June 27-29, 1991.
. . -- • • M

[6] D. Eichmann and J. Atldns, "Des,gu of a Latace-Based Faceted Classifical3on System, Second
International Conference on Software Engineering and Knowledge Engineering, Skokie, IL, pages

90-97, June 21-23, 1990.

-10-

ii

11

J
11l

B

nl

L,

w

1 In,

t

P

Ii¢

=

_ :0

w

[7]

[8]

[9]

[lO]

[II]

[12]

[13]

[14]

[15]

D. Eichmarm and IC Srinivas, "Neural Network-Based Retrieval from Software Reuse Reposito-

ties," CHI'91 Workshop on Neural Networks and Pattern Recognition in Human--Computer Inter-

faces, New Orleans, LA, April 28, 1991.

J. V. Guttag and J. J. Horning, "The Algebraic Specification of Abstract Data Types," Acta Infor-

matica, vol. 10, pages 27-52, 1978.

W. P. Jones, "On the Applied use of Human Memory Models: The Memory Extender Personal

Filing System," Int. Journal of Man--Machine Studies, vol. 25, no. 2, pages 191-228, August,
1986.

D. Kaput and H. 2_mng, "RRL: A Rewrite Rule Laboratory," Ninth International Conference on

Automated Deduction (CADE-9), Argonne, IL, May, 1988.

R. Prieto-Diaz, P. Freeman, "Classifying Software for Reusability," IEEE Software, vol. 4, no. I,
pages 6-16, 1987.

R. Ptieto-Diaz, "Implementing Faceted Classification for Software Reuse," Communications of

the ACM, vol. 34, no. 5, pages 80-97.

A. Snyder, "Inheritance in the Development of Eneapsulat_ Software Components," Research

Directions in Object-OrientedProgramming, B. Shriv_ and P. Wegnex, eds., M]T Press,

Cambridge, MA, pages 165-188, 1987.

B. Weide, W. Ogden, S. Zweben, "Reusable Software Components," Advances in Computers, M.
C. Yovits, ed., Academic Press, 1991.

M. Wirsing, "Algebraic Spccif_ations," Handbook of Theoretical Computer Science, vol. B, J.

van Leeuwen, ed., MIT Press, 1991.

E

ah..

TiC

w

-II-

Ug

U

!

Iw

11

R

qw

m
W

m
u
ml

_W

i.

W

m
v

_qV

W

E_r

II

I

B

II

D
l

U

w

f

_r

w

L _

_4

r_

w

w

i

i
w

im

II

z_w

m
w

m
II

I

lw

I

Ii v

w

w

w

v_

I

i

II

W

I

I
i

I

w.-

r

w

w

N93-12388

Neural Network-Based Retrieval from

Software Reuse Repositories*

David Eichmann & KankanahaUi Srinivas

Department of Statistics & Computer Science

West Virginia University

Morgantown, WV 26506

eichmann/srini@ a.cs.wvu.wvnet.edu

October 7, 1991

i

_r

L .

Overview. A significant hurdle confronts the software reuser attempting to se-

lect candidate components from a software repository - discriminating between

those components without resorting to inspection of the irnplernentation(s). We

outline an approach to this problem based upon neural networks which avoids

requiring the repository administrators to define a conceptual closeness graph for

the classification vocabulary.

1 Introduction

Reuse has long been an accepted principle in many scientific disciplines. Biologists

use established laboratory instruments to record experimental results; chemists use

standardized measuring devices. Engineers design based upon the availability of

components that facilitate product development. It is unreasonable to expect an

electrical engineer to design and develop the transistor from first principles every

time one is required.

Software engineers, however 3 are frequently guilty of a comparable practice

in their discipline. The reasons for this are as varied as the environments in which

software is developed, but they usually include the following:

*To appear in Neural Networ_ and Patte_ Reeogr_itioa in Human Computer Interfaces, R.
Beale and J. Findlay (eds.), Ellis Horwood Ltd., West Sussex, UK, due out March, 1992.

--=a2_

W

• a lack of development standards;

• the not invented here syndrome;

• poor programming language support for the mechanical act of reuse; and

• poor support in identifying, cataloging, and retrieving reuse candidates.

The first three items involve organization mentality, and will not be ad-

dressed here. 1 We instead focus upon the final item in this list, the nature of the

repository itself, and more specifically upon the mechanisms provided for classifi-

cation and retrieval of components from the repository.

The complexity of non-trivial software components and their supporting

documentation easily qualifies reuse as a "wicked" problem - frequently intractable

in both description and solution. We describe an approach that we are currently

exploring for making classification and retrieval mechanisms more efficient and

natural for the software reuser. This approach centers around the use of neural

networks in support of imprecise classification and querying.

2 The Problem

A mature software repository can contain thousands of components, each with

its own specification, interface, and typically, its own vocabulary. Consider the

signatures presented in Figures 1 and 2 for a itack of integers and a queue of

integers, respectively.

Create: ==*Stack

Push: Stack × Integer==* Stack

Pop: Stack==_Stack

Top: Stack ==* Integer

Empty: Stack ==# Boolean

Figure 1: Signature of a Stack

XConcerning language support L there are languageS which readily supp0rt-reuse, but they

must be available to the programmers. Consider for a moment the inertia exhibited by FOR-
TRAN and COBOL in commercial data processing. The very existence of such large bodies
of code in languages ill-suited for reuse acts as an inhibitor for the movement of organizations
towards better suited languages.

g

W

S
g

g

g

g

!

w

!

g

=
g

_m
m

L±

t

m

_n

J

M

m
I_ z

M

L

v

L_

w

Create: :=_ Queue

Enqueue: Queue x Integer=_ Queue

Dequeue: Queue ==_Queue

Front: Queue _, Integer

Empty: Queue ==_ Boolean

Figure 2: Signature of A Queue

These signatures are isomorphic up to renaming, and thus exemplify what

we have come to refer to as the _ocabula_ problem. Software reusers implicitly

associate distinct semantics with particular names, for example, pop and enqueue.

Thus, by the choice of names, a component developer can mislead reusers as

to the semantics of components, or provide no means of discriminating between

components. Figure 3, for example, appears to be equally applicable as a signature

for both stack and queue, primarily due to the neutral nature of the names used.

Create: ==_ Sequence

Insert: Sequence × Integer ==_ Sequence

Remove: Sequence _ Sequence

Current: Sequence ==_ Integer

Empty: Sequence ==_ Boolean

Figure 3: Signature of a Sequence

3 Software Classification

Retrieval mechanisms for software repositori_ have traditionally provided some

sort of classification structure in support of user queries. Keyword-based retrieval

is perhaps the most common of these classification structures, but key'words are

ill-suited to domains with rich stmct+ure an d complex semantics. This section lays
out the principle representational problems in software classification and selected
solutions to them.

W

3.1 Literary Warrant

Library scientists _ise literary warrant for the classification of texts. Representative

samples drawn from the set of works generate a set of descriptive terms, which

in turn generate a classification of the works as a whole. The adequacy of the

classification system hinges a great deal on the initial choice of samples.

With appropriate tools, literary warrant in software need not restrict itself

to a sample of the body of works, l_s_er, _t c_ examine each of the individual

works in turn, providing vocabularies for each of them. This may indeed be

requiredin repositories where the component coverage in a particular area is sparse.

3.2 Conceptual Closeness

The vocabulary of terms built up through literarywarrant typicallycontains a

great deal of semantic overlap words whose meanings are the same, or at least

similar.For instance,two Components, one implementing a stack and the other

a queue might both be characterizedwith the word insert,corresponding to push

and enqueue, respectively,as discussed in section2.

Synonym smbigulty is commonly resolved through the construction of a

restrictedvocabulary, tightlycontrolledby the repositoryadministrators. Repos-

itory users must learn this restrictedvocabulary, or rely upon the assistanceof

consultantsalready fsmilhx with it.Itisrarelythe case,however, that the choice

isbetween two synonyms. More typicallyitisbetween words which have similar,

but distinct,meanings (e.g.,insert,push, and enqueue, as above).

3.3 Algebraic Specification

While not really a classification technique, algebraic specification techniques (e.g.,

[GH78]) partially (and unintentionally) overcome the vocabulary problem through

inclusion of behavioral axioms into the specification. The main objection to the use

of algebraic specifications in reuse is the need to actually un'ite and comprehend

the specifications. The traditional exa_es-]n-th-e_]J_tera_tui'e rare]-y exceed the
complexity of the above Figures. Also, algebraic techniques poorly _ddress issues

such as performance and concurre_eyy -- -

A repository containing algebraic specifications depends upon the expertise

of the reusers browsing the repository; small repositories are easily understood

whereas it is unreasonable to require a reuser to examine all components in a

large repository for suitability.

4

W

a

a
a

g

W

J

W

f:

!
J

W

i
W

-.iE _
!

i

m

g

_mp

_mp

r

r_

w

w

3.4 Basic Faceted Classification

Basic faceted classification begins by using domain analysis (aka literary warrant)

"to derive faceted classification schemes of domain specific objects." The classifier

not only derives terms for grouping, but also identifies a vocabulary that serves

as the values that populate those groups. From the software perspective, the

groupings, or faceta become a taxonomy for the software.

Prieto-D_az and Freeman identified six facets: function, object, medium,

system type, functional area, and setting [PDF87]. Each software component in

the repository has a value assigned for e_ch of these facets. The software reuser

locates software components by specifying facet values that are descriptive of

the software desired. In the event that a given user query has no matches in

the repository, the query may be relaxed by wild-carding particular facets in the

query, thereby generalizing it.

The primary drawback in this approach is the flatness and homogeneity

of the classification structure. A general-purpo6e reuse system might contain not

only reusable components, but also design documents, formal specifications, and

perhaps vendor product information. Basic faceted classification creates a single

tuple space for all entries, resulting in numerous facets, tuples with many "not

applicable" entries for thcGe facets, and irequent wildcardlng in user queries.

A number of reuse repository projects have incorporated fsceted classifi-

cation as a retrieval mechanism (e.g., [Gue87][Atk]), but they primarily address

the vocabulary problem through a keyword control hoard, charged with creating

a controlled vocabulary for classification.

Gagliano, st. al. computed conceptual closeness measures to deigns a

semantic distance between two facet values [GOF+88]. The two principle limita-

tions to this approach are the static nature of the distance metrics and the lack

of inter-facet dependencies; each of the facets had its own closeness matrix.

3.5 Lattice-Based Faceted Classification

Eichmann and Atkins extended basic faceted classificationby incorporating a

latticeas the principlestructuringmechanism in the classificationscheme lEA90].

As shown in Figure 4, there are two major sublatticesmaking up the overall

lattice.

univ

" Facet [l

unction [l _ect [l _etting [l
| ! !

! ! !

! ! !

Function Object Setting

Facet

{}

tU)le

void

Figure 4: The Type Lattice

On the leftis the sublatticecomprised of setsof facet values (forclarity,

shown here with only three facets),partiallyordered by the subset relation.The

Facet D vertex in the latticerepresentsthe empty facetset,while the Fo.c.etvertex

representsthe set of allfacet values in the classificationscheme. Each member of

the power set of allfacet v_ues fallssomewhereWit_n _thissublattlce.

On the rightis the tuple sublattice,containing facetset components, and

partiallyordered by the subtype reLation[Eic89].The vertex denotes the empty

tuple.The tuplevertex denotes the tuplecontaining allpossiblefacetcomponents,

with each component containing allthe valuesfor that facet.Adding facetvalues

to a component or adding a new component to a tuple instance moves the tuplc

instance down through the lattice.

Queries to a repository supporting lattlce-basedfaceted classii_cationare

similarto those to one Supporting basic facetedclassification,with two important

distinctions- query tuples can mention as many or as few facetsas the reuser

wishes, thereby avoiding the need for wildcarding, and classifierscan similarly

classifya given component with as many or as few facetsas are needed for precise

characterizationof the component.

:L_t_ce_uecl_tacete_c_ls_s{fiC_tionavoidsconceptual closenessissuesthrough

the specificationofsetsof facetvaluesin the classificationof components. Ifthere

are a number of semantically close facet values that allcharacterizethe compo-

nent, allare included in the facet instance for that component. This avoids the

need to generate closenessmetrics forfacetvalues,but italso may resultin reuser

confusion about just what the component does.

w_

J

W

m

m
i

J

m
m
i

W

e

u
!
w

W

W

I

!

!
w

m

V

B

V

g

W

-ram

3.6 Towards Adaptive Classification and Retrieval

The principle failing in "the methods described so far is the static nature of the

classification. Once a component has been classified, it remains unchanged until

the repository administrators see fit to change it. Thh k unlikely to occur unless

those same administrators closely track reuser retrieval success, and more impor-

tantly, retrieval failure - particularly in those c_es where there are components

in the repository matching reuser requirements, but those components were not

identified during the query session.

Manual adjustment of closeness metrics becomes increasingly unreasonable

as the scale of the repository increases. The number of connections in the con-

ceptua] graph is combinatorially explosive. The principle design goal in our work

is the creation of an adaptive query mechanism - one capable of altering its be-

havior based upon implicit user feedback. This feedback appears in two guises;

failed queries, addressed by widening the scope of the query; and reuser ref_tsaJs,

cases where candidate components were presented to the reuser, but not selected

for retrieval. The lattice provides a nice structure for the former, but a different

approach is required for the latter.

4 Our Approach

We are currently designing a new retrieval mechanism using previous work de-

scribed in [EAg0] as a starting point, and employing neural networks to address

the vocabulary and refusal problems. The motivations behind using neural net-
works include:

Associative Retrieval from Noisy and Incomplete Cues: Traditional

methods for component retrieval are based on strict pattern matching meth-

ods such as unification. In other words, the query should contain exact infor-

mation about the component(s) in the repository. Since exact information

about components is usually not known, queries fail in cases where exact

matching does not occur. Associative retrieval based on neural networks

uses relaxation, retrieving components based on partial/approximate/best

matches. This is sometimes referred to as data fault tolerance and is ideally

suited for our problem domain.

Classification and Optimization by Adaptation: In approaches using

the conceptual closeness measure, the problem of defining correlations be-

tween various components and assigning a numerical correlation value rests

w

upon the designer or the administrator of the repository. Designers idiosyn-

craticaUy arrive at these correlations and their values, which may not be

appropriate from the perspective of the software retriever/reuser. It is our

belief that the best way to arrive at these correlations and their values is for

the system to learn them in responding to user queries.

We also intend to ule another adaptation strategy for optimizing the re-

trieval of similar repetitive queries. Since in most situations, reusers repeat-

edly issue similar queries, the system will adapt to these queries by weight

adjustment. The weight adjustment will settle the relaxation process quickly

in response to these repetitive queries and hence result in faster retrieval.

The effect here is similar to that of caching frequently issued queries. Note,

however, that once the system has learned that two concepts are conceptu-

ally close, we want it to remember this, irrespective of how often the reusers

inquire about it.

Massive Parallelism: The neurocomputing paradigm is characterized by

asynchronous, massively parallel, simple computations. Since neural net-

works are massively parallel, retrieval from large repositories is possible,

using the fast associative search techniques that are natural and inherent in
these networks.

J

m

g

m

g

m

5 System Architecture

In this section, we describe some of the potential neural-network architectures and

discuss their strengths and limitations in employing them for our task.

m

!

W

5.1 Hopfield Networks

These networks can be used as content-addressable or associative memories. Ini-

tially the weights in the network are set using representative samples from all

the exemplar classes. After this initialization, the input pattern I is presented to

the network. The network then iterates and converges to a output. This output

represents the exemplar class which matches the input pattern best.

Although this network has many properties that are desirable for our sys-

tem, some of the serious limitations in our context include:

1. The networks have limited capacity [Lip87] and may converge to novel spu-

rious patterns.

w

-ID

L.-

=

g

w

w

2. They result in unstable exemplar patterns if many bits are shared among

multiple exemplar patterns.

3. There axe no algorithms to incrementally train these networks, i.e_, to adjust

the initial weights in a manner that creates a specific alteration in subsequent

query responses. This is important for our application, since we seek an

architecture capable of adapting over time to user feedback.

5.2 Supervised Learning Algorithms

Many good super_edlearning algorithms exist, including backpropagation [RHW86],

cascade correlation and others, but they cannot be used in this context because

our problem requires an unsuperrised learning algorithm. Hence, we are investi-

gating unsupervised learning architectures, such as Adaptive Resonance Theory

(ART) [Gro88].

5.3 ART

ART belongs to a class of learning architectures known as competitive learning

models [Gro88][CG88]. The competitive learning models are usually characterized

by a network consisting of two layers L1 and L2. The input pattern I is fed into

layer L1 where it is normalized. The normalized input is fed forward to layer L2

through the weighted interconnection links that forms an adaptive filter. Layer

L2 is organized as a ur/nner-taJ¢e-a/l network [FB82][Sri91][BSDg0]. The network

layer L2 is usually organized as a mutually inhibitory network wherein each unit in

the network inhibits every other unit in the network through a value proportional

to the strength of its activation. Layer L_ has the task of selecting the network

node a,,_, receiving the maximum total input from L1. The node a,,,affi is said to

cluster or code the input pattern I.

In the ART system the input pattern I is fed in to the lower layer L1. This

input is normalized _md is fed forward to Layer L_. This results in a network node

n,_ of layer L2 being selected by virtue of it having the maximum activation

value among all the nodes in the layer. This node n_, represents the hypothesis

H put forth by the network about the particular classification of the input I. Now

a matching phase occurs wherein the hypothesis H and the input I are matched,

with the qualityof the requiredmatch controlledby the vigilanceparameter.

Ifthe quality of match is worse than the value specifiedin the vigilance

parameter, a mismatch occurs and the layerL2 isresetthereby deactivatingnode

n._=. The input I activatesanother node and the above process recurs,comparing

another hypothesis or forming a new hypothesis about the input pattern I. New

w

hypotheses are formed by learning new classes and recruiting new uncommitted

nodes to represent these classes.

Some of the properties of ART that makes it an potential choice for our

task include

1. Real-time (on-line) learning;

2. Unsupervised learning;

3. Fast adaptive search for best match as opposed to strict match; and

4. Variable error criterion which can be flne-tuned by appropriately setting the

_g_ance parameter.

" _ _:However, one of the iim_tationsof ART for our p_rticulartask arisesfrom

its inability to distinguish the queries for particular components by users, from the

component classes which form the exemplar classes. Another limitation arises from

the fact that only one exemplar class is chosen at a time which represents the best

match, rather than choosing a collection of close matches for reuser consideration.

Our proposed system will operate in two phases. The first, loading phase

populates the repository with components. The second, retde,_al phase identi-

ties candidate components in response to user queries. The distinguishing factor

between the two phases is the value of the vlgilsnce parameter. In the loading

phase, the system will employ a high vigilance value. This ensures the forma-

tion of separate categories for each of the components in the repository. In the

retrieval phase, the system will enYpl0y a low vigilance value, thereby retrieving

components that best match the query.

We also intend to modify the winner-take-all network layer of the ART to

choose k winners instead of one. This is extremely useful "m-our context because

there may be multiple software components which meet the user specifications.

The software reuser may select a subset m </c of these components based upon

requirements. The system should asSOCiate these m components with the user

query and retrieve them for subsequent queries having similar input specifications.

This can be achieved by asSOCiatingsmall initialweightson the laterallinksof the

winner'take'alinetwork and modifying them appropriately based on user feedback

(i.e.,reuserrefusals).

I0

W

m

l

l

m

g

g

V

w__

m

B

R

g

m

I

g

i
W

I

6 Discussion

6.1 Our Placement in the User-Based Framework

Discussions in the workshop placed our work in the region of user intention / no

feedback in the user-based framework. Upon further reflection, we have slightly

altered our perspective. While this placement is certainly proper in the strict

context of a single user query, it is not accurate in the broader context of a

community of users accessing the repository over time.

As the system is rewarded for providing true hits to users and punished for

providing false hits, there is a consensual drift, providing feedback for subsequent

user queries. Thus, viewing the amortized effect of user behavior, rather than the

immediate effect of user behavior, our system shifts down towards passive obser-

vation and left towards immediate feedback. _ The net result is that our system

occupies two distinct points in the framework, one for the semantics involved in

the immediate query query and one for the semantics involved in the aggregate

behavior of the repository over time.

_Rm

=

= :

mm_

6.2 The Relationship to Gestural Recognition

Scale [BE], Rubine [Rub], and Zhao [Zha], the other occupants of the Novel Input

category of the task-based framework, respectively address sign language recogni-

tion, drawing geometric figures, and diagram editing - all interpreting imprecise

human gestures and mapping them to a precise application domain. They all

address the inability of humans to accurately repeat physical movement.

Our mechanism, on the other hand, accepts a precisely phrased user query

and adapts it to an imprecise application domain. Ignoring the issue of poor

typing skills, our user community can accurately repeat a given user intention

(query) any number of times, and we know exactly what that intention is. The

challenge in our domain occurs when that intention has no exact match in the

system. It's similar to Rubine's system offering to draw a square or a hexagram

(or perhaps even a five-sided star) when the user gestured a pentagram, but the

system had no training in pentagram gestures.

3or more precisely, non-immediate feedback.

ii

U

6.3 Directions for Future Research

Options availableto us at thispoint in our work liein two general directions,

further extending repository semantics and exploring the application of neural

networks to thesetypesofapplicationdomains. :................

With respectto the former,the classii_catlonscheme describedhere is

restrictedto facetsand tuples containing facets.In other work, the classification

scheme was firstextended to include signatures for abstract data types [Eic91a]

and then further extended to support axioms in a second phase in the query

process [Eic91b]. A merger of that work with that described here has appeal -

particularly the imprecise matching of signatures. ;- : :

With respect to the latter, we are interested in studying the tradeoffs

between individual user adaptation versus the consensual adaptation described
above. These two_actual].y are the extremes _ in gcont_nuurn_of user groupings.

This coupled with an additional dimension of user expertise forms a state space of

user behavior where the system might more heavily weight certain semantic con-
nections for experts and other Semantic connections for novices. This Will require

the development of new algorithms for relaxation.

7 Conclusions

Our approach extends previous work in component retrievalby incrementally

adapting the conceptual closenessweights based upon actual use, rather than an

administrator'sassumptions. Neural networks provide a quite suitableframework

for supporting thisadaptation. Reuse repositoryretrievalprovides a unique and

challengingapplicationdomain for neural networking techniques.

This approach effec_vely-adds an additionaldimension to the conceptual

space formed by the type lattice.This additionaldimension allows traversalfrom

one vertex to another using the adapted closenessweightsderived from user ac-

tivity,rather than the partialorders used in defining the lattice.The resulting

retrievalmechanism supports both well-definedlattice-constrainedqueries and

ill-definedneural-network constrained queriesin the same framework,

References

[Atk] J. Atkins. private communication.

12

m

U

= _

W

!
!

w

|

J

W

m_
m
!

g

!

_m

W

R

W

l

l

!

!

I
W

W

t
g

= :

! :

w

m

w

[BE]

[BSD90]

[CGSS]

[EA90]

[Eic89]

[Eic91a]

[Eic91b]

[FBS2]

[GH78]

[GOF+SS]

[GroSS]

R. Beale and A. D. N. Edwards. Gestures and neural networks in

human-computer interaction, in this volume.

J. Barden, K'. Srinivas, and D. Dharmavaratha. Winner-take-all net-

works: Time-based versus activation-based mechanisms for various se-

lection goals. In IEEE International Conference on Circuit.s and Sys-

tems, pages 215-218, New Orleans, LA, May 1990.

G. A. Carpenter and S. Orossberg. The art of adaptive pattern recogni-

tion by a self-organizing neural network. IEEE Computer, 21(3):77-88,

1988.

D. Eichmann and J. Atkins. Design of a lattice-based faceted classi-

fication system. In Second International Conference on Software En-

gineering and Knowledge Engineering, pages 90-97, Skokie, IL, June

1990.

D. Eichmann. Polymorphic Eztensions to the Relational Model. PhD

dissertation, The University of Iowa, Dept. of Computer Science, Au-

gust 1989.

D. Eichmann. A hybrid approach to software repository retrieval:

Blending faceted classification and type signatureg. In Third Interna-

tional Conference of Software Engineering and Knowledge Engineering,

pages 236-240, Skokie, IL, June 1991.

D. Eichmann. Selecting reusable components using algebraic specifi-

cations. In Second International Conference on Algebraic Methodology

and Software Technology, pages 37--40, Iowa City, IA, May 1991. to ap-

pear in AMAST'91, Workshops in Computing Series, Springer-Verlag.

J. A. Feldman and D. H. Ballard. Connectionist models and their

properties. Cognitive Science, 6:205-254, 1982.

J. V. Guttag and J. J. Horning. The algebraic specification of abstract

data types. Acta Informatica, I0:27-52, 1978.

R. Gagliano, G. S. Owen, M. D. Fraser, K. N. King, and P. A. Honka-

hen. Tools for managing a library of reusable ada components. In

Workshop on Ada Reuse and Metrics, Atlanta, GA, June 1988.

S. Grossberg, editor. Neural Networks and Natural Intelligence. MIT

Press, Cambridge, MA, 1988.

13

w

[Gue87]

[LipS,]

[PDF87]

[Pa W86]

[Rub]

[Sri91]

[Zha]

E' Guerrieri. On classification schemes and reusability measurements

for reusable software components. SofTech Technical Report IP-256,

Sofrech', Inc., Waltham, MA, 1987:

R. P. Lippmann. An introduction to computing with neural nets.

IEEE ASSP Magazine, 4:4-22, 1987.

• t

R. Pneto-Dlaz and P. Freeman. Classifying software for reusability.

IEEE Sol'ware, 4(1):6-16, 1987.

D. E. Rumelhart, G. E. Hinton, and R. J. Williamn. Learning internal

representations by error propagation, in D. E Rumelhart and J. L.

McClelland, editors, Parallel Distributed Processing, volume 1. MIT

Press, Cambridge, MA, 1986.

D. Rubine. Criteria for gesture recognition technologies, in this vol-

ume. :

K. Srinivas. Selection in Massively Parallel Connectionist Networks.

PhD dissertation, New Mexico State University, Dept. of Computer
Science_ 19giT _

R. Zhao. On the graphical gesture recognition for diagram editing, in
this volume.

i

Z

J

'i

|
7--

W

i
!

g

v_
t
l

g

!

m

_j

I

W

14

g

mm

li

_i

!
J

g

i

_m
W

g

i

g

w

LhI_

w

U

W

W

g

U

IB

g

6

g

W
II

N

il

N93-12389

Inheritance for Software Reuse: The Good, The Bad,

and The Ugly

Murali Sitaraman and David Eichmann

Dept. of Statistics and Computer Science

West Virginia University

Morgantown, WV 26506

(murali, eichmann)(f_cs.wvu._wnet.edu

Abstract

Inheritance is a powerful mechanism supported by object-oriented programming languages

to facilitate modifications and extensions of reusable software components. This paper presents

a taxonomy of the various purposes for which an inheritance mechanism can be used. While

some uses of inheritance significantly enhance software reuse, some others are not as useful and

in fact, may even be detrimental to reuse. The paper discusses several examples, and argues

for a programming language design that is selective in its support for inheritance.

Keywords: extensions, implementation, inheritance, reusable software components, specifi-
cation

=

v

1 Introduction

Inheritance has been widely recognized as an important mechanism for constructing new reusable

software components from existing components [Liskov 87, Meyer 88]. This paper proposes a tax-
onomy for inheritance-based reuse. Some members of this taxonomy permit effective reuse and

must be supported by object-oriented programming languages. However, there are other uses of

inheritance that do not enhance reuse, and may even be detrimental to reuse. A language must,

therefore, be selective in its support for inheritance.

2 A Framework for Discussion

We will use the "3C reference model" (for reusable software components) as the basis for our

taxonomy in this paper [Edwards 90, Latour 90, Tracz 90b]. This model is the result of the discus-

sions at the Reuse in Practice Workshop (July 1989) and the Workshop on Methods and Tools for

W

Reuse (.June 1990). The 3C model associates three key ideas with reusable software components as

summarized in [Weide 91]:

Concept An abstract (formal) "specification explaining (precisely) what functionality is provided

by a software piece, without saying how the functionality can be realized.

Content (for a concept) A piece of code that (preCisely) describes the data structures and algo-

rithms for implementing (in a formal, programming language) the concept.

Context A statement (precisely) explaining the environment (using formal notations) in which a

concept or content is presented.

Several contents may implement the same concept. They will all be identical with respect to

their functionality, but may be different with respect to their performance behaviors (e.g., spare

or time characteristics) To use a component, a client (user) needs to understand only its con-

cept. The functional correctness of the client program depends only on this concept [Parnas 72].

The client will remain unaffected even if it switches from one content of the concept to another.

These observations have important implications for modification and maintenance of software built

from reusable components. We have used a similar model in our research to characterize the

nature of a components industry that would evolve when current reuse efforts prove successful

[Muralidharan 90b, Sitaraman 90, Weide 91].

3 A Classification of Uses of Inheritance

Inheritance can be used, in the above framework, to extend (or modify), and thus, reuse each aspect

of a software component - concept, content, and context. This section presents a classification of

such uses of inheritance. We restrict our attention in this paper to inheritance of concepts and

contents alone. It is important to note that our classification has nothing to do with the actual

inheritance mechanisms supported in object-oriented languages; it deals only with the possible uses
of inheritance.

W

J

W

w

emm

I

m

g

w

W

g

3.1 A Classification Scheme

The criticalissuesin inheritance mechanisms from a reuse perspective are who inherits,what is

inherited,and what can be done with that which isinherited.We consider each of these issuesin

turn. This discussionsupports both singleand multiple inheritance.

(i)Who inheritsand from whom

Specificationinheritanceoccurs when parents are concepts. Implementation inheritanceoccurs

when parents are contents. These definitions are similar in spirit to those found in [LaLonde 89].

The heir can be either a concept or a content for either specification or implementation inheritance.

The only combination that is not meaningful (based on our definitions) is inheritance of a content

by a concept.

(ii) What parts are inherited

"2

t_

V

m

J

I

W

w

m
m
!

u

In
i

-- We focus our attention here only on formally defined concepts and contents that implement

these concepts. A formal concept for a data abstraction has two parts: the abstract m#del(s) that

describes the type(s) provided by the concept, and the abstract specifications of the operations on

the provided type(s). (When a concept provides only a procedural abstraction, only the second

part is present.) Tile appendix describes an example concept - a formal specification of a stack data

abstraction.

A content for a concept defining a data abstraction also has two parts: the representation(s) of

the provided type(s), and the code for the provided operations.

An heir may selectively inherit only parts of a concept or content.

(iii) The mode of inheritance

An heir may inherit parts of a concept or a content for read only or for redefining purposes.

When a heir redefines a part of its parent, the re-definition may or may not be "compatible" with its

. . parent. The definition of compatibility depends on what is inherited: usually it involves restricting

the domain of one or more inherited types.

3.2 Specification Inheritance - Inheritance of a Concept

A concept can be inherited by either another concept or bv a content. (When multiple concepts

are inherited, different concepts could be affected differently.)

3.2.1 Inheritance by a concept

First, we define what it means for an heir to compatibly redefine its parent's parts. The abstract

model A of an heir is compatible with the corresponding model B of its parent, only if the parent

concept is unaffected by substituting A for B. (For. example, the heir's model should satisfy the

invariants in the parent concept.) An operation P in an heir is compatible with the corresponding

operation Q in its parent, only if P's pre-condition is no stronger than Q's and P's post-condition

is no weaker than Q's.

Because few object-oriented programming languages have included rigorous formal specifica-

tions, the issues raised by some of these combinations have not been explored in the community.

In table 1, the meaningful combinations are marked with a ,. For want of space, we discuss the

meaning and relevance of only some of these combinations here.

(i) Read only - both abstract model(s) and operations

Table 1: Inheritance a concept by another concept

Mode

Read only

Read and compatible redefine

Read and incompatible redefine

[None[Model Operations I Both

-T

W
This is probably tile most common mode for specification-based extensions. For example, a basic

stack concept may provide the operations push. pop. and is-empty. This concept may be extended

to include, say, an operation to reverse a stack. The typical reason for extending a concept is either il
that the original concept is not sufficiently complete or that it is in the developmental stage. In

[Sitaraman 91], we have argued for a reason to extend even well-designed concepts for building _

efficient implementations. Without the ability to inherit a concept, this is impossible to do. This

use of inheritance can enhance reuse and programming languages must support this possibility.

(ii) Read all and compatibly redefine - operations

Sometimes, it may be essential to create a new concept by modifying the specifications of an

existing concept. If the changes are compatible (according to the definitions of compatibility in this

section) with the specifications in the original concept, then the new concept can be used wherever

the original concept was being used. For example, a stack concept can inherit from a bounded stack

concept, and relax the pre-condition on the push operation. Intuitively, an unbounded stack can

be used wherever a bounded stack can be used.

(iii) Read all and incompatibly redefine - operations

If a stack concept is already defined, and someone extends it to be a bounded stack, this will be

the case. In this case, the model of the stack has to be extended to include a bound. In addition,

while the original stack will have no pre-condition for the push operation, the heir concept _qlhlve

one. This is incompatible because the heir has a stronger pre-condition. Intuitively, a bounded

stack cannot be used where an unbounded stack was previously used. If the abstract model of a

type is redefined, the specifications of most, if not all, operations will have to be redefined. In this

case, inheritance may result in some, but not in significant reuse.

3.2.2 Inheritance by a content

When a concept is inherited by a content, only few combinations are meaningful.

(i) Read only - both abstract model(s) and operations

This is the most normal c_ i_fconcept inheritance by COntent. To implement a concept, a

content must inherit it for read only purposes. Of course, more than one content may inherit

the same concept in this mode, resulting in multiple implementations of a concept. This is an

important use of inheritance [Meyer 88, Sitaraman 90]. and is crucial for the evolution of a successful

components industry.

Table "2: Inheritance of a concept by a content

Mode I None l Model Operations I Both

0

Read on ly

Read and compatible redefine

Read and incompatible redefine

g

J

i

g

IP

t
m

g

(ii) Read all and compatibly redefine - operations

Sometimes, an implementation of an ol)eration may require fewer pre-conditions than stated in

its specifications and ensure more po_t-conditions. In this case. the operation does more than what

-- the specification of the operation needs it to do. For example, an operation may reclaim unused

storage even if it is not explicitly stated in its specification.

- (iii) Read all and incompatibly redefine - operations

This is an implementation where the code for some operations do not provide the behavior

specified in the concept. In otherwords, this content does not correctly implement its concept, i.e.,

it is incorrect. Clearly, this is a bad use of inheritance.

•7 3.3 Implementation Inheritance - Inheritance of a Content

A content can be inherited only by another content. The concept of the parent and the heir may

or may not be the same. Just as in the case of a concept, a content may be inherited in three

different modes. A content redefines a representation compatibly only if the heir's representation

when used in the place of the parent's representation leaves the parent content unaffected. A

--- compatible redefinition of an operation does not violate the specification of the operation in the

parent content's concept. Content inheritvalce may also be selective. (When multiple contents axe

inherited, different contents could be affected differently.)

(i) Read only - both representation(s) and operations

_,, Apparently, this use of content inheritance is to permit an heir take advantage of the otherwise

hidden details of another content. For a well-designed component, providing "su_ciently complete"

=; functionality, all essential details of the conterit may be accessed by calling the operations in its

- concept. This use of inheritance helps in avoid a few procedure calls, but clearly violates the

principle of information hiding. This can lead to serious pitfalls, including poor developmental

independence and maintainability [Muralidharan 90a. Raj 90]. This may. however, be a useful way

"-" of keeping track of different versions of the same content.

(ii) Read all and compatibly redefine - operations

This case of content inheritance probably is most useful to keep track of the different versions

of an evolving content.

_--'- (iii) Read all and compatibly redefine - both rep. and operations

= =

Table 3: Inheritance of a content by a content

Mode

Read only

Read and compatible redefine

Read and inco_, potible redefine

[No"e I Rep"'! Operaio_ I Both]

• • J •

• • •

w

Sometimes. when a new concept is created by compatibly redefining an existing concept, it may

be possible to create a content for the new concept by compat? blv redefining a content of the original

concept. The new content, in tl_is case. will also be a content for tile original cofi_epL W

Incompatible redefinitions may be useful in some rare cases. It must be noted, however, that g

all uses of content inheritance suffer from certain basic problems because their violate information

hiding.
W

4 Discussion : []

Iw

Object-oriented programming languages typically support one mechanism for inheritance that is

useful for various purposes. While this is important, we believe the mechanism should be discrim-

inatory and allow only certain uses. We have shown that most uses of specification inheritance lib

.are useful and some uses of implementation inheritance may not be desirable. The components of

a library that would evolve from discriminatory uses of inheritance will facilitate construction of _a
software systems that are reliable, modifiable, and maintainable. lip

The work presented here can be formalized, and extended to compare inheritance mechanisms in

various languages and the forms of uses that are supported. Also, it is important to identify inter::: !

esting examples for the various clao_es, thereby leading to a better understanding of the usefulness g

of these classes. The present scheme should also be enhanced to account for context inheritance.

References

Edwards, S., "The 3C Model of Reusable Software Components," Third Annual

Workshop: Methods and Tools for Reuse. Syracuse, 1990.

[Edwards 90]

LaLonde, W. R., "Designing Families of Data Types Using Exemplars," ACM

Transactions on Programming Languages and Systems 11, 2, April 1989, pp.
212-248.

[LaLonde 89]

Latour, L., T. Wheeler, and W. Frakes, _Descriptive and Predictive Aspects

of the 3Cs Model: SETA1 working group summary," Third Annual Workshop:

Methods and Tools for Reuse, Syracuse, 1990.

[Latour 90]

Liskov, B., "Data Abstraction and Hierarchy," Addendum to the Procs. of OOP-

SLA i987. Orlando, FL, pp. 17-34.

[Liskov 87]

Meyer, B., Object-Oriented Software Construction, Prentice-Hall, Englewood

Cliffs. N J, 1988.

[Meyer 88]

Muralidharan, S., and B. W. Weide, -Should Data Abstraction Be Violated to

Enhance Software Reuse?." Proc. 8th Annual National Conf. on Ada Technol-

ogy, ANCOST, Inc.. Atlanta. GA. Mar. 1990, 515-524.

t

m
W

W

11

W

[]

m

W

i

[Muralidharan 9On]

w_

W
U

R

!l

[Muralidharan 90b] Muralidharan, S.. and B. W. Weide, "Reusable Software Conaponents = For-

mal Specifications + Object Code: Some Implications." 3rd Annual Workshop:

Methods and Tools for Reuse. Syracuse Univ. CASE (:!enter, Syracuse, NY,

July 1990.

[Parnas 72]

[Raj 901

Parnas, D. L., "On the Criteria to be Used in Decomposing Systems into Mod-

ules," Communications of the ACM 15. 12. December 1972, 1053-1058.

Raj, R. K., "Code Inheritance Considered Harmful," 3rd Annual Workshop:

Methods and Tools for Reuse. Syracuse Univ. CASE Center, Syracuse, NY,

July 1990.

[Sitaraman 91]

[Sitaraman 90]

[Tracz 90a]

[Trac.z 90b]

[Weide 91]

Sitaraman, M. and D. Eichmann, Building and Using Efficient Eztensions:

An Approach Based on Inheritance, TR 91-01-02, Dept. of Stat. and Comp.

Science, West Virginia University, Morgantown, WV 26506.

Sitaraman, M., Mechanisms and Methods for Performance Tunin 9 of Reusable

Software Components, Ph.D. Dissertation, Dept. of Comp. and Info. Science,

Ohio State Univ., Columbus, OH. July 1990.

Tracz, W., "Where Does Reuse Start?," AGM SIGSOFT Software Engineering

Notes 15, 2, pp. 42-46.

Tracz, W., "The Three Cons of Software Reuse," Third Annual Workshop:

Methods and Tools for Reuse, Syracuse, 1990.

Weide, B. W., W. Ogden, andS. H. Zweben, "Reusable Software Components,"

Advances in Computers. M. C. Yovits, eds., AcaAemic Press, New York, NY,

1991.

[Weide 86] Weide, B. W., Design and Specification of Abstract Data Types Using OWL,

OSU- CISRC-TR-86-01, Dept. of Comp. and Info. Science, Ohio State Univ.,

Columbus, OH, March 1986.

__- [Wing 901 Wing, J. M., "A Specifier's Introduction to Formal Methods," IEEE Computer

23, 9, September 1990, pp. $-24.

5 Appendix: An Example Concept

. Figure 1 shows a concept for a Stack component explained using a model-based specification. For

our purposes, it does not matter which specific specification language and/or programming language

-_ is used in explaining concepts and contents. The Concepts could use any of the formal methods

-- described in [Wing 90]. We have chosen a dialect of RESOLVE [Weide 91].

Here, the type Stack is modeled as a mathematical STRING of Items and the operations are

formally specified using mathematical string functions EMPTY and POST. Each operation has

",-" been explained using two clauses: a requires clause that states what must be true of the arguments

7

W

J

concept Stack_Template (type Item)

type Stack is modeled by STRING (Item)

initially for all s: Stack, s = EMPTY

operation Push(s: Stack, X:-item)

ensures s = POST(s, x) and Item. Init (x)

operation Pop(s: Stack, x: Item)

requires s /= EMPTY

ensures #s = POST (s, x)

operation Is_Empty(s: Stack) return Boolean

ensures Is_Empty iff s = EMPTY

end Stack_Template

Figure 1" Formal Specification of a Stack Abstraction

passed to the operation and an ensures clause that states what will be true of the parameters at the

completion of the operation. In the ensures clause, the notation _#x" for a parameter x denotes its

incoming value and R.xS denotes its value when the operation returns. (In the requires clause, the

variables always denote the incoming values.) The specification of Push, for example, states that

the value of the returned stack (s) is its incoming value (#s) with the incoming value of x (#x)

appended_to the end. The returned value of x is an initial _:alue of the type Item.

6 About the Authors

Murali Sitaraman is an Assistant Professor of Computer Science at the West Virginia University. He

holds a Ph. D. in Computer Science from The Ohio State University and M. E. (distinction) from

the Indian Institute of Science. His current research interests are in data structures and algorithms,

programming languages, software reuse, verification and validation, and some aspects of distributed

computing. His Internet address is murali6_cs.wvu.wvnet.edu.

David Eichmann is currently an Assistant Professor of Computer Science at West Virginia

University and heads the Software Reuse Repository Lab {SoRReL). He received his doctorate

in computer science from The University of Iowa. and taught in Seattle University's Master's in

Software Engineering Program before joining WVU. His research interests focus on software reuse

systems, particularly in the representation and retrieval of life cycle artifacts, and on database

systems, particularly in type systems for databases. SoRReL is currently supported in part by

NASA's RBSE project (previously known as AdaNet).

g

U

U

iii

l
W

Z
g

g

J

g

g

i
m

U

J

IB

ID

W
g

i
IB
U

W

l

!

1!

2

:,v-

:,,,."

L.

= -

quw

W

IP

m

w

w

J

I

!m

IB

g

R

iP

Ir

g

|

g

m

II

II
B

g

W

I

IB

F._

!I

_m
!

Q

v

v

N93-12390

Supporting Multiple Domains in a Single Reuse Repository

David Eichmann "

SoRReL Group
Dept. of Statistics and Computer Science

West Virginia University
Morgantown, WV 26506

eichmann@cs.wvu.wvnet.edu

Abstract: Domain analysis typically results in the construction of a domain-
specific repository. Such a re_sitory imposes artificial boundaries on the shar-
ing of similar assets between related domains. A latti_ approach to re-
pository modeling can preserve a reuser's domain specific view of the reposi-
too/, while avoiding replication of commonly used assets and supporting a more
generalperspectiveondomain inten_lafionships.

Keywords: domainanalysis,softwarereuse, facetedclassification,type lattices,
recordsubtyping,repositoryviews

=

_ o

1. Introduction

There is an emerging consensus on the importance of domain analysis in the success of a

software reuse program [9]. We find it particularly significant that the construction of domain-

specific repositories is a natural consequence of domain---specific analysis of various software

system assets. These domain-specific repositories provide yet another guise for the NIH (not-

invented-here) syndrome, and hence fail to capitalize on possible reuse scenarios that lie in re-

lated, but distinct domains.

We propose here that repositories should not be domain-specific, but rather that a particular

view of the repository should be domain-s'pecific, and that this view should be user-adjustable.

We use our lattice-based approach to classification [4] to demonswate how this can be accom-

plished. Secdon 2 briefly reviews issues in domain analysis, faceted classification, and the con-

cepts of typing and lattices. Secdon 3 reviews our lattice-based repository model, followed by a

demonsu'ation of domain-specific support in secdon 4. The paper closes with a discussion and

suggestions for future work with section 5.

* This work was supported in part by NASA under ex)operative agreement NCC-9-16, and in part by
MountainNet, Inc.

-1-

I

2. Background

Our work draws its motivation equally from the areas of domain analysis and type theory.

Recent advances in the application of type lattices to database models and knowledge represen-

tation provide an excellent formal framework for repository structure.

2.1. Domain Analysis

Dom_n analys,s ,sdic processof_dd_Lf-y_ngand org_lng knowledge

about some classof problems _ theproblem domain _ tosupport the dcscrip-

tionand solutionof thoseproblems." [I]

The intcrcstin domain analysisreflectsitsimportance to thecffecdvc populationand use of

reuserepositories.There arc substantialarguments in favorof the reasoned coverage of a par-

ticularsoftware system problem domain, ratherthan a grab-bag approach topopulating there-

pository.Rcusers frustratedwith gaps inthecoverage of therepositoryfrequentlyfailto return

tothe repository.We referthereadertotheexcellentcollectioneditedby Prieto-Diaz and

Arango fora deeper presentationof domain analysis[9].

However, wc do have reservationsconcerning theexclusivenessof domain-specific reposi-

tories.Particularclassesof assetsarc bestconsidereddomain-independent _ or perhaps more

aptly_ usefulina broad classof domains; themost obvious assetClass0fthisna_ isthatof

thesimplc abstractdata types.These "trans-domain" assetseffectivelyform theirown domain,

which numerous, more restrictivedomains draw upon forrepresentational_tructure. Do-

main analystsarctherebyprvscntcda dilemma, toreplicatethetrans--domainassetsintothe do-

main-specificrepositories(alongwith theinherentmaintenance headaches),or tofactorthe

u'ans--domainassetsintotheirown domain _ resultingin a multi-domain environment. The

work presentedhere attemptstoresolvethisdilemma.

2.2. F_¢eted Classification

Facctcd classificationbegins by using domain analysistoidentifyand examine a collection

of work perceivedto be related[12].This processrelicson a librarynotionknown as literary

-2-

J

I

I

!
m

g

m
i

mm

I

lO
II

W
I

ii
atom

I

i
nm

II

I

=ram
u

I

n

I

S

-- i

I

l

I

warrant,wherea classifier collects a representative sample of rifles which are to be classified,

and extracts descriptive terms to serve as a grouping mechanism for the rifles. From this process,

the classifier not only derives temas for grouping but also identifies a vocabulary that serves as

values within the groups. A facet then is the encapsulation of a set of related concepts, ex-

pressed in the vocabulary of the domain.

i .

-.,_.

i J

From the softwareperspective,thegroupings or facetsbecome a taxonomy forthe software.

Using LiteraryWarrant, Pricto-Diazand Freeman identifiedsixfacetsthatcan be used as a tax-

onomy [10]: Function, Object, Medium, System Type, Functional Area and Setting. Every

software component is classified by assigning a value for each facet for that component. For ex-

ample, a software component in a Relational Database Management System that parses expres-

sions might be classified with the tuple

(parse, expression, stack, interpreter, DBMS,).

Thus, the Function facet value for this component is "parse", the Object facet value is "expres-

sion", etc. Note that no value has been assigned for the Setting facet as this software component

does not sccm to have an appropriate value for the Setting facet. The taxonomy formed is "fiat"

in that there is no nesting of facets within facets, as is the case with other popular classification

schemes (e.g., the Dewey decimal system, the ACM Computing Reviews system, etc.).

Vc,,M

L3.J.atli.cam

Our principle concept for structuring the repository is a lattice. Lattices handily support in-

stances that are pairwis¢ incomparable (e.g., a tuple characterizing a design document and a

tuple characterizing a conference paper), but that arc both comparable to some third instance

(e.g., the more general notion of a document, which is an upper bound in lattice terminology).

The remainder of this section provides a brief review of lattice theory, section 3 presents the ap-

plication of lattices to faceted classification.

-3-

m

, =

w

2.4. Sub tyDes and Inheritance -

The object classes in an object-oriented system are organized into a partial ordering. Object

classes (subtypes) inherit attributes and methods from their ancestors (supertypes) in the order- g

hag. Single inheritance schemes restrict a given object class to at most one immediate ancestor

W

in the partial ordering. Multiple inheritance schemes allow a given object class to have any

nnumber of immediate ancestors in the partial ordering. CardeUi formalized some of the seman-

tics of multiple inheritance in [2].

II
Conformance allows one type instance to be treated as if it were an instance of another type

[8]. Any type a conforms to any type b if the subtype relation holds between a and b, i.e., a -_ b.
1

In a limited sense, this is what happens with inheritance, but conformance is more general. In-

heritance requires that this treatment only be allowed when moving up the _ hierarchy or lat- Q

flee. Inheritance uses a partial ordering of types (by subtype), plus an implicit definition of exis-

tence dependencies between a given type and its ancestors. Conformance can hold for arbitrary w

types, independent of any type ordering scheme. Such a notion is clearly superior to inheritance m

11

based upon hierarchies or lattices for type--related query languages, where intermediate results

(derived from existing types, but not part of the database schema) need to be manipulated, m

Our classification scheme requires the notion of subtype to be defined between instances of n
u

facet set types and between instances of record types. Let a be a facet set type containing m fac-

et instances and b be a facet set type containing n instances. Then a is a subtype of b, written a -_ N
g

b, if for each b_ in b (1 < i < n), b_ is also in a. Similarly, letR = {i, : t,, ..., i. : t.} be a record type

N

containing n components and S = {i, : t', i. : t'} be a record type containing m components, 1 < D

m < n (we can reorder component entries as necessary). Then R is a subtype of S, written R -_ S, if

for each ij, (1 _j < m), tj -_ t_

3.Lattice-Based Facet_ Classificatlon

Inheritance-based systems are, in some sense, navigational. A user querying an object-ori-

ented database must be aware of the inheritance structure of that specific database, just as a user

-4-

m

g

!

W

lib

i
n

- -

%,..-

w

querying a network database must be aware of database structure. Because of their non--naviga-

tional characteristics, conformance--based models promise to gain prominence over inheritance-

based models, just as relational models have over network models. Our approach uses confor-

mance to identify components using their position in a type lattice. One particularly useful con-

sequence of this choice is the ability to dynamically evolve the repository structure, adding new

vertices to the lattice as analysts examine new domains.

3,1, The TyDe Lattice

Figure 1 shows the general structure of the reuse type lattice. At the mp is T the special

universal type. Any value conforms to the universal type. At the bottom is .k, the void type.

These two special types ensure that any two types in the lattice have both an upper bound and a

lower bound. Between the universal and void types appear the upper and lower bounds for the

two type constructors facet and tuple. Facet0 characterizes the notion of the empty facet type; it

contains no values, but is still a facet. Likewise, Facet characterizes the notion of the set of all

possible facet values. The dotted line between them indicates that an arbitrary number of types

may appear here in the lattice. For example, figure 2 shows the sublattiee for facet sets for the

examples in section 2.2.

The tuple sublattice has a similar structure. At the top is the empty tuple type { }, character-

izing a tuple with no facets. At the bottom is mple, the tuple type with all possible facets.

T

Facet<> {1
!

!

!

!

!

!

Facet m_le

a_

Figm'e 1. The reuse type lattice

-5-

Traditional retrieval of individual facet values relies upon maximal conjunction of boolean

terms for retrieval of matches on all facets and maximal disjunction of boolean terms for

matches on any facet of an" expression. In order to fit the notion of facet into the type lattice, we

look at sets of facets. A set of facets corresponds to a conjunction on all of the facets comprising

the set. Each set occupies a unique position in the type lattice. We handle disjunction by allow-

ing a given component to occupy multiple lattice positions. Matching occurs on any of the posi-

tions, providing the same semantics as disjunction.

Facet values are equivalent to enumeration values. We attach no particular connotation

within the type system to a particular facet value. Values are bound to some semantic concept in

the problem domain.

The subset relation is our partial order for facets. The least value of this portion of the lattice

is the set of all facet values from all facets in the problem domain, den0tedby the distinguished

name Facet. The greatest value of this portion of the lattice is the empty set, denoted by the dis-

tinguished name Facet0. The union operator generates the greatest lower bound. The intersec-

tion operator generates the least upper bound.

J

I

u

I

I

W

I

i

I

M

m

I

m

Facet0

Function0 Object0
!

I

I

I

!

!

I

I

I

Object

Mediumo SystemTypeo FunctionalAreao Settingo

Function Medium SystemType FunctionalArea Setting

Facet

Figure 2. A Subiatdce of Facet Sets

-6-

[]
l

i

I

l

B

m

I

g

W

g

!
B

I

m

3,2. The Inference Rules

A formal mechanism for the specification of the query semantics is clearly of use. In this

case, type inference directly aplSfies to the problem. We begin with a brief remark concerning

notation. In the inference rules that follow, the symbol A represents an existing set of assump-

tions. A always contains the type information generated by the database schema which imple-

ments the repository. It is occasionally necessary to extend the set of assumptions with some

additional information. A. x denotes the set of assumptions extended with the fact x. A t- x

states that given a set of assumptions A, x can be inferred. Inferences above the horizontal line

act as premises for the conclusions, the inferences below the horizontal line. An expression is

well-typed if a type for the expression can be deduced using the available inference rules, other-

wise it is ill-typed. We give in this section only a minimal set inference rules to provide a flavor

of the complete set, which may be found in [3, 4].

3.2.1. Domain Interval Sublyping

Typically, a subtype is "smaller" than its supertype, for example, the range of employee ages

is a subtype of the integers. Here the reverse is true, a subtype is a larger collection of values

than its supertype - some entry containing at least all the facet values of interest is thereby an

instance of a subtype of the query instance's type.

L
v

A domain interval is a type qualification that explicitly denotes the valid subrange(s) for a

base type. Rule (1) extends subtyping to domain intervals, where each subinterval in the sub-

A F t(mt...nt)-_ t(mt'...nt')

A _ t_(._:::__)_<.t(__'...r_5 (:)

A t" t(mt...nt nu...ta) -_t(mt'...nt', m{...r_3

type is a subtype of some interval in the supertype. Assume that t is a base type ordered by <

(the ordering may be arbitrary). A domain that is (inclusively) delimited by two values, a and b,

is denoted t(....t,). Intervals made up of more than a single continuous value range are denoted by

a set of ranges, for example, t(o...s.,...,t,_ denotes the interval that includes the subinterval a

through b inclusive, the subinterval c through d inclusive, and the singleton value e. The single-

-7-

tonrangee is equivalent to e...e. When we use such notation we intend that a < b and c < d, but

not necessarily that b _ c or d < e. An empty pair of brackets, to, denotes an empty interval, i.e.,

one which contains no elements, in our particular application, _the base types are finite sets of

enumeration (facet) values.

3.2.2. Tuple Subtyping

This collection of inference rules explicitly types the tuples that classify components. The

unlabelled record attributes used by Prieto-Diaz in tuples can be ambiguous when a given facet

value is used in more than one domain. Rather than require that facet values be distinct across

facets, we view a tuple r to be of type record, {i_ : ta, i," t,}. Type ti for attribute ij must be a

facet type. The empty tupie (i.e., the tuple containing no facets) is of type {}, the tuple type with

no components. The order in which components appear is arbitrary, since attribute name is used

to distinguish facets.

Rule (2) characterizes record subtyping, handling situations where a component of the sub-

A _"1 <m<n

A I- t'l -_tl
• (2)

AF t'm :_ tm

A 1"{il : t'l ira" t'm , in : tn} -_ {il : tx im : tm}

type is a subtype of the corresponding component in the supertype.

4. Modeling Multiple Domains in a Single Reposito_

The repository model presented in section 3 is well-suited to supporting multiple domains

simultaneously, while allowing for the appearance of domain-specificity where necessary. Our
. :

model further supports the notion of a complete life cycle repository, as many of the issues ap-

plicable for component assets from multiple domains apply equally well to the characterization

of life cycle assets.

4.1 Domain :Anaivsis andRe_o$itow_tructure

Consider the effect of domain analyses on the definition Of the resulting repositories. If we

assume that each domain analySisis Carried out in isolation (in order to focus solely upon the

-8-

w

II

m

@
m

requirements of that particular domain), it naturally follows that the collection of facets used to

characterize that domain (and the values that make up each of those facets) will also be inde-

pendent. Realistically though, rio domain is totally independent from all others, and there will

be facets (or subsets of facet values) that two related domains will have in common.

A maximal upper bound for a domain is the distinguished vertex in the lattice that contains

exactly those facets used in classifying the domain, but that contains no facet values. A maximal

lower bound for a domain is that distinguished vertex in the lattice that contains exactly those

facets used in classifying the domain, and for each of those facets, the n--tuple contains all values

used by that facet. All instances in the domain fall somewhere between the maximal lower

bound and the maximal upper bound for that domain. There are three possible relationships be-

tween domains in the unified lattice.

L

L
w

First, domains that share one or more complete facets, but differ by at least one facet, have

facet n--tuples that are siblings in the lattice. Their only commonality is the n--tuple correspond-

ing to the least upper bound of the two n-tuples involved; i.e., neither is a subtype of the other,

but they do share a common supertype. By inference rule (2), this is the n-tuple comprised ex-

actly of those facets which the two domains share. Domain interval subtyping does not come

into play, since all facet instances contain all values in their respective facets.

t

w

Next, domains that share the same set of facets, but only partially share facet values for one

or more facets, and differ by at least one facet value in some facet, are likewise siblings in the

lattice. They share a single maximalupper_:_imd, since they are classified by the same facets,

and they have a greatest lower bound that is comprised of the union of each of the respective

facet value sets.

Finally, domains that share some, but not all, facets, but only partially share facet values for

one or more facets, are likewise siblings in the lattice. Both this and the second relationship be-

-9-

w

tween domains require inference rule (2), plus the entire set of inference rules for domain inter-

val subtyping.

4.2 Sublattices as Reoository Views

Reusers wishing to focus on a specific domain in our model need only concentrate on the

sublattice defined by the maximal upper and lower bounds for that domain. Restricting queries

to mentioning only those facets present in those n-tuples effectively reduces the repository data

model to a flat tuple space in the tradition Of Prieto--Diaz. The restriction is easily accomplished

by providing repository views similar in nature to the relational definition of a view.
.... --_ :_ _ :_ _ -; ---:7 -_:_ i _ _' _:-_: ; _ _ _ _ _ _ -

A repository view is deemed by a pair of n-topics: the first characterizing the upper extent of

the lattice that the view may reference, and the second characterizing the lower extent of the lat-

tice that the view may reference. By varying the placement of these view extents in the lattice, a

variety of repository structures may be presented to the reuser. The upper extent specifies those

facets which the user query must s_ify, andre lower extent_es those facets which the

user query may specify. Defining multiple repository views supports the presentation of arbi-

trary domains in a single composite view.

The most general example of this is an upper extent of (} and a lower extent of tuple opens

the entire repository to the reuser.

An upper extent of the maximal upper bound for a domain and a lower extent of the maximal

lower bound for _at same domain restricts the _U_to specifying at most and at least those fac-

ets used in classifying that particular domain, i.e,, a flat tuple space with a slight variation (sets

of facet values may be specified, but need not be).

An upper extent comprised of two empty facets and a lower extent of tuple supports the no-

tion of a multiple inheritance structure rooted at those two facets and including any vertex that

includes at least those facets.

- 10-

1!

W

U

U

I

g

z

m
g

m
W

U

g

[]
I

E

I!
E

g
II

iB

ii

!
II

ii
el

,maw

w

w

w

"S_" "

Specifying a lower extent with a facet containing only a subset of the complete facet restricts

reusers employing that view from accessing any asset not classified using values from that sub-
¢

set.

4.3 Repository. Synergy

As mentioned previously, few domains are truly independent from all others. A domain-

specific repository with good coverage of that domain must necessarily duplicate at some level

assets that are very similar to, if not duplicates of, assets found in repositories for closely related

domains. Repositories supporting a collection of related domains avoid this unneeded replica-

tion of assets.

Many of the assets comprising these repositories will be adaptable to a variety of domains

beyond the one for which they were initially designed. This synergy of assets promises a deeper

understanding of the software process, but an understanding more difficult to achieve with the

artificial boundaries of domains impeding access. Presenting a seamless integration of a diverse

universe of assets is critical to the success of software reuse.

If the user interface for the reuse system supports the possibility of multiple repository back-

ends, each specific to a given domain, it is possible to avoid asset replication. However, this im-

plies cooperation between repository administrators that may not be convenient, or even feasi-

ble. In a mature reuse industry, repositories will be geographically distributed and span work

groups, organizations, and even industries. Here again, seamless integration of multiple reposi-

tories is important, and not readily handled by a flat, static classification structure.

4,4 The Relationshio to Life Cycle Assets and Granularity

As we previously mentioned, we are interested in a complete life cycle repository model, in-

eluding requirements assets, design assets, and so on, as well as the traditional component assets.

Granularity issues are particularly interesting in such a model, as reusers attempt to track par-

ticular concepts through requirements and design and on into maintenance.

-11-

Sucha datamodel adds -facets particular to a specific life cycle phase, or particular to a spe-

cific level of granularity, just as independent domain analysis adds facets to a particular domain.

In effect, the resulting repository model contains three dimensions: domain, life cycle phase, and

granularity. The definition of facet values and the corresponding set of lattice vertices handles

domains and life cycle phases. Multiple vertex instances handle granularity issues under our

current approach.

iD

B

5. Conclusions and Future Work

We described here an approach unifying the specificity of domain-specific repositories with

the flexibility of domain-independent repositories. The p_ary drawback we see in Prieto--

Diaz' approach to classification is the flatness and homogeneity of the classification structure. A

general reuse system might have not only reusable components, but also design documents, for-

real specifications, and perhaps vendor production information, to n_ a few possibilities, and

have all of these things for multiple problem domains. Prieto--Diaz' scheme creates a single

tuple space for all entries, resulting in numerous facets, tuples with many "not/applicable" en-

tries for those facets, and frequent wildcarding in user queries. Our model supports precise char-

acterization of assets, and lattice-based queries may be as restrictive or as broad as necessary to

suit a reuser's needs.

Conceptual closeness is a very appealing concept in our framework, but offers its own col-

lection of difficulties, particularly the establishment of distances for terms in a given domain,

and the resolution of conflicting distances for terms occurring in multiple domains. We are cur-

rently exploring the use of neural networks to support adaptive distances, based upon user esti-

mations of the relevance of query matches to the intended semantics. An early re_rt on this

work appears in [5].

Related to __iosenesSis theidb.a ofconceptital n_ig_r_d_around n-tuples.

Conceptual closeness addresses the semantic distance between two facet values, while concep-

tual neighborhoods address the semantic distance between two n--tuples in the lattice. The re-

- 12-

i
r

Ii

B
W

i

-l.,

L_

w

pository model described here is one mechanism for constructing a conceptual neighborhood,

based upon subtype relationships. We plan to consider alternative neighborhood definition

mechanisms, including compos'mg distances for n-tuples from the distances for facet values in-

volved in those nquples. We are also considering the inclusion of signatures [7] and semantics

[6, 11] into the repository model to improve query effectiveness.

References

[l] Arango, G. and R. Prieto-Diaz, "Part 1: Introduction and Overview - Domain Analysis

Concepts and Research Directions," Domain Analysis and Software Systems Modeling,

Prieto-Diaz, R. and G. Arango (eds.), IEEE Computer Society, Los Alamitos, CA, 1991,

pages 9-32.

[2] Cardelli, L., "A Semantics of Multiple Inheritance," in Semantics of Data Types (Pro-

ceedings International Symposium Sophia-Antipolos, France, June 1984), Springcr-Ver-

I

lag, Lecture Notes in Computer Science, vol. 173, pages 51--68.

[3] Eichmaxm, D., Polymorphic Extensions to the Relational Model, Ph.D. dissertation, The

University of Iowa, Iowa City, IA, August 1989. Also available as technical report

89--05.

[4]

[51

[6]

Eichmann, D. A. and J. Atkins, "Design of a Lattice-Based Faceted Classification Sys-

tem," Second International Conference on Software Engineering and Knowledge Engi-

neering, Skokie, IL, June 21-23, 1990, pages 90-97.

Eichmann, D. A. and IC Srinivas, "Neural Network-Based Retrieval from Reuse Reposi-

tories," CHI'91 Workshop on Pattern Recognition and Neural Networks in Human-Com-

puter Interaction, New Orleans, LA, April 28, 1991.

Eichmann, D. A., "Selecting Reusable Components Using Algebraic Specifications,"

Second International Conference on Algebraic Methodology and Software Technology.

Iowa City, I.A, May 22-25, 1991, pages 37--40.

-13-

[7]

[8]

Eichmann, D. A., "A Hybrid Approach to Software Repository Retrieval: Blending Fac-

eted Classification and Type Signatures," flu'rd International Conference on Software

Engineering and Khowledge Engineering, Skokie, IL, June 27-29, 1991, pages 236-240.

Horn, C., "Conformance, Genericity, Inheritance and Enhancement," ECOOP'87 - Proc.

European Conference on Object-Oriented Programming, Paris, France, June 15-17,

i987, pages 223-233. _ _

t

I

II

i

[9] Prieto--Diaz, R. and G. Arango (eds.), Domain Analysis and Software Systems Modeling,

IEEE Computer Society, Los Alamitos, CA, 1991.

[10] Prieto--Diaz, R. and P. Freeman, "Classifying Software for Reusability," IEEE Software,

vol. 4, no. 1, January, 1987, pages 6-16.

[11] Steigerwald, R., Luqi, and J. McDoweU, "A CASE Tool for Reusable Software Compo-

nent Storage and Retrieval in Rapid Prototyping," Third International Conference on

Software Engineering and Knowledge Engineering, Skokie, IL, June 27-29, 1991, pages

34-39.

[12] Vickery, B. C., Faceted Classification Schemes, vol. 5, Rutgers Series on Systems for the

Intellectual Organization of Information, S. Artandi (ed.), Rutgers University Press, New

Brunswick, NJ, 1966.

i

J

J

!
!II

m

g

i

m
i

- 14-

-7

_Z

i
i

me

i

i

i

at

at

i

i

w

u

m

N93212391

Assessing Repository Technology:

Where Do We Go From Here?

David Eichmann t

Software Reuse Repository Lab (SoRReL)
Dept. of Statistics and Computer Science

West Virginia University

m

Send correspondence to:

David Eichmann

SoRReL

Dept. of Statistics and Computer Science

West Virginia University

Morgantown, WV 26506

email: eichmann@cs.wvu.wvnet.edu

to appear in the International Journal of Sol.are En&ineerin&and Knowledge Engineering.
t This work was supported in part by NASA as _ of the Repository Based Softwa_ Engineering project.
cooperative agreement NCC-9-16, project no. RICI$ $E.43, subcontract no. 089 and in part by a grant from
MountainNet Inc.

I

Abstract

Three s_p!e _information retrievalsYste_ms, archie, autoLib, and

WAIS, are ¢.bmpared as to their expressiveness and usefulness, fast

in the general context of information retrieval, and then as prospec-

tive software reuse repositories. While the representational capabil-

ities of these systems are limited, they provide a useful foundation

for future repository efforts, particularly from the perspective of re-

pository distribution and coherent user interface design.

B

m

i

m

u

III

U

m

J

I

B

m
I

I

m
m

I

m
l
!

i

w

m

v

r =

1 - Introduction

As informationbecomes an .'.increasinglyimportantsectorof the globaleconomy, the way in

which we accessthatinformation- and therebythe way inwhich we accessand structureknowl-

edge - becomes a criticalconcern.The engineeringof knowledge isquicklybecoming an areaof

research in its own right, independent of its parent disciplines of artificial intelligence, database

systems, and information retrieval; consider the title of the journal that you now hold in your hands.

Wegner recognized the value of knowledge engineering in his landmark article on the role of cap-

ital in software development:

"Knowledge engineering is a body of techniques for managing the complexity of knowledge.., it is

capital-intensive in the sense that reusability is a primaryconsideration in the development of books,

expert systems, and other structures for the management and use of Imowledge." [10, p. 33]

Just as Wegner observed that the products of software engineering are capital, so are the products
l

of knowledge engineering a form of capital. Identification, su'ucture, and locambRity are critical to

the enabling of this knowledge capital. Innovation in this area is driven from two diverse perspec-

fives, the traditional perspective of researchers and a not-so-traditional perspective of what might

be referred to as an information underground.

The goalof thisinformationunderground isnot necessarilyan extensionof the stateof theart,

but a rather more pragmatic development of an informational infrastructure [4]. The prototypes re-

suitingfrom thistype of work propagatequicklyover theInteract,immediately generatinglarge

numbers of users. Even while still experimental, systems that provide distinct benefit frequently

need to limit access in order to maintain reasonable system performance for other users of the un-

derlying platforms.

My reference to this community as an underground is calculated, for even within the computer

sciencecommunity (letalone theacademic or commercial communities as a whole),only a small

percentage of individuals are aware of such information systems. This article was spurred by my

interest in software repositories, a number of conversations that I've had in recent months, and the

1

Ill

benefit I think can be gained by widening the forum for such systems to a larger audience.

In particular, it is interesting to evaluate these systems as an enabling technology for software

reuse repositories. Repositories, and by implication, information retrieval mechanisms, play a crib

ical role in successful reuse. This statement disagrees with the conventional wisdom [9], that reuse

is a social and managerial issue, and not a technical one. A closer examination of the conventional

wisdom leads to a recognition that without a repository with substantial representationai capability

many of the social and manageriai requirements cannot be supported.

This paper surveys a number of interesting information server projects, with an eye towards

enabling technologies. Section 2 lays down a typical scenario in which such systems are used.

Sample sessions for three systems appear in section 3, and an analysis appears in section 4. I con-

clude with remarks on the potential of future systems.

2 - A Scenario and User Profile
= = .

Consider a programmer involved in a research project in some reasonably sized university. I

choose this context not only for its personal familiarity, but also because

• such projects typically take place in facilities with rich local and wide area network connectiv-

ity;

• programmers typically have a personal workstation with substantial display capabilities (e.g.,

X-Windows); and

• there arc strong incentives in avoiding the redevelopment of capabilities available from other

projects, either local or remote.

In effect, the development environment is one which is typical, or will be within the next few years.

In addition, the social infrastructur_ and equipment infrastructure for a successful reuse program

are present, if not an explicit charter for reuse, or a true repository.

7_

B

=

m
.i

w

g

m
=

m
n

m

J

=

J

l

m,

I

Our programmer is now faced with a dilemma m aware that there is a strong likelihood that a
L_

m
M

2
m

m===

I

w

m

u

u

needed tool or component already exists somewhere out on the network, but uncertain as to where

to begin the search in the thousands of systems that currently make up the Intemet, or even how to

identify the needed artifact. Until' recently the only choices included asking acquaintances for ad-

vice (although the study by Schwartz and Wood [7] demonstrated the amazing potential for even

ad hoc mechanisms such as this), poring over intermittently posted electronic digest news articles

for likely sounding names, or manually searching a few sites maintained by volunteers and acces-

sible through anonymous ftp. Obviously, our programmer is ripe for recruitment as a client of the

services provided by the information underground.

l

l

3 - Example Repositories

Early in the evolution of the Internet, system administrators began adapting file wansfer facil-

ities into what today is referred to as anonymous ftp, comprised of publicly accessible accounts, a

limited file space, and a restricted command set. These facilities, while amazingly popular as a dis-

semination tool, presume a fair amount of user knowledge, not the least of which being where to

look for the sought-after artifact. This section describes three information systems, archie, WAIS,

and autoLib. Each of these systems has a distinct design focus, anonymous ftp access in archie,

document retrieval/display in WAIS, and a limited form of electronic library in autoLib. However,

the resulting systems have much in common, and their look and feel has several similarities. These

systems were selected for discussion because they were designed primarily as information retriev-

al systems, rather than as software repository systems.

L _

i

w

3.1 - archie

The archie system is"an on-line resource directory service for an internetworked environment"

[3]. While archie isn't truly a repository per se, since it doesn't actually contain the artifacts that it

classifies, when treated as a whole with the diverse anonymous ftp sites that it references, it does

fit into our discussion. Archie grew out of the efforts of Emtage and Deutsch to automate the cre-

ation and referencing of previously hand-maintained lists of anonymous ftp sites. A demon peri-

m

1 1
Figure I: archie screen upon entry

odically sweeps through a list of known ftp sites, creating a list of artifacts accessible at each of

them. This list of artifacts is then indexed for access by clients throughout the Internet seeking a

site for some particular item.

I describe the xarchie user interface here, developed by Ferguson for the X-windows system

from the ASCII user interface developed by Kehoe and the Prospero system developed by Neuman

[5]. Xarchie and archie together form an example of a client/server application architecture, where

the client application (xarchie) provides user-local support for commands, information display, and

communication to the server application (archie), which provides access to a remove facility, in

this case the archie database. Figure I shows xarchie's screen at entry. The series of buttons across

the top of the window control the activity of the user's xarchie client and its interaction with an

archie server and the ft'p sites which the server indexes. Figure 2 shows the xarchie settings panel,

including in particular the mode of search (exact, substring, regular expression, etc.), the order that

hits are presented (sorted by name, modification date, etc.), and the archie server host to interro-

gate, in this case archie.surmnet.

Entering a search term for an artifact, say xarchie.tarfZ, a compressed Unix tar f'de of the xarch-

ie source directory, and clicking the query button initiates the search, as shown in figure 3. As the

search progresses, xarchie updates the status line, indicating establishment of connection, progress,

and completion.

4

m

m

m

g

i

m

-±

l

I

u

lib

I

m

L--

m

j

w

r

m

U

%_--.I

B

[] xa,_rde set_ _ i

S_cb _:] aact

de_euit

---' re hi e.lra.r_.

I_t_e 99llfau(" :

• ",._1:_]. lriaeed;s 4

lletarL4eI 3

Iq_ _,rmdmr 'rlr_s btmr_

Figure 2: archie settings window

1 1

r

W

m

Figure 3: Initiating an archie search

I I
w

w

7

Figure 4: archie search results

Figure 4 shows the results of the search as a list of sites in the left scrolling region in the middle

of the window. Selecting a particular site by clicking on it results in figure 5, with the location, size,

and so on for this artifact on this site. A single instance of a match at the selected site automatically

selects the middle scrolling region (corresponding to the directories) and the fight scroUing region

w

I it_..: Fo_ 3 ,.m_ - _ .,+

"_:18

Figure 5: Selection of a site and copy

I XW_

II owlltAonl:

III I_-o.,+_
!)1 In'_m'__'r'R'rm

Ilmmr r m
IOIl_gll :

mlprel-¢_, eTe

ib_ll_ 1,_.:

Figure 6: WAIS main window

(corresponding to the files). Multiple matches (_/pical with inexact matches) require the selection

of both a directory and a file for the lower fields to be filled in. Clicking the ftp button establishes

an anonymous ftp session to the archive site and retrieves a selected artifact into the loeaJ directory

shown tn the settings panel (shown in figure 2 as '.', the current directory).

i

qlff

=

Ill

Ig

r_

m

I

l

l

l

I

i

3.2 - WAIS

The Wide Area Information Service (WAIS) is an experiment in text-based distributed infor-

mation systems by Thinking Machines and a number of collaborat_ [4]. WAIS Supports the no-

tion of multiple sources of information; a user selects one or more sources to respond to a question,

phrased as a string of words which are deemed relevant to the question. Hgure 6 shows the main

window, containing a list of previously phrased questions and a list of already known sources.

m

IN

m

Ill

6
Ill

I

= ,

m

m

w

Source ZclLLt

]lu_: _eorreloada-LrchLveo. 8r©

Se_r : L_2g. 71.11.2

Service: _210

Der, abue : _eorrel.

Coot: L.0

un_._: L: froe

Ke._r_L_or : L,rm_eOb. co. m. wvrd_, edU

Dncript_.cm:

liservQr cre_r._L rLr.,h I_L.TS re].eue O b3 m Jep _0 14:$g:46 1991 by reueeeb, co._v_et, ec_

i]t_p_enr.],y-To: v_e-d_L_octory-ofoeerveroequako, td_nk, can

i':he fi].ee of type _ ueed in 04_ Lnclb_ 1rare:
in /uerOG/reuN/oiJtr_L ,,4,
• /_o r0G/r ouee/ot:_r e/_po 1

I /_erOGIreueeler.acslt:q?e2

i_e da_u6 to r_o _ oour©,for r_ sofu_:, _ h_e, to_ L._

Figure 7: Source window for SoRReL archive

Opening a source displays a window containing information concerning the nature and location of

that source, as shown in figure 7 for the Ada archive that the SoRReL group maintains. This infor-

marion includes the Internet address and service port that the server for the source listens to, as well

as unit and cost fields (as yet unused) and a textual description of the source. A single server can

support multiple sources, each separately indexed and independently accessible. A distinguished

source, maintained by Thinking Machines, acts as a directory to other sources by indexing source

definitions such as the one shown in figure 7. These source definitions ate retrievable using the

same question mechanism employed for other questions. The sole distinction is in the saving of

results; saving a source definition places it in the directory containing the user's known sources,

making it accessible for subsequent questioning.

Figure 8 shows the question window following a successful search of the SoRReL source. Us-

ers select one or more already known sources to be consulted for this question by clicking the add

source button and selecting from the resulting display of sources. The "Tell me about:" field ac-

cepts a collection of words to be used as a specification of the question. WAIS uses relevance feed-

back as its search mechanism; documents which match one or more of the words contained in the

"Tell me about:" field are added to the collection of matching documents, and then presented to the

user in the "Resulting Documents:" field ranked by a relevance metric, an indication of the fit to

7

Iil

: Slat./laur t_:

II)i
__._. ,_o.jt_ o0_.,__[o._._,o..,-.-_jr_-___-1
ne,,u1_:Ang Ill" 1ooo 18. _ cod.g, mh /_ r Oq;/rdmso/It4_r _ lr.q_l/© _-tda2/

401 I. GI_ ©_m_. _4. /_tO_/¢_e/et_rolt._el/©_-_la21

301 SOS. al. pi_pd131, tr© /_'OGl:_lli_tol. _,ILlbm_J_l_l

30? (;71, 4Z pL_j_r.Sl, st© /_rOG/r_e/n_tml. ed_bQ_r.b_.r)_l

2(;0 149. I;X _F_de. lit. /_rO6/_e/l_$/_el/¢t_-$_2/

st_: [,mm_l 40 d;=c_um... :_

Figure 8: Data flo_, question and results

Iotr, wa.do_ /mrOS/mme/mtan/Umel/ct_-_d_2/ II

, fo 11. L-_t_ro_t,_m'_

• nx etrel o4dt_Jre L* • _e,u_bla e*_ of _ri© p_kagee

or the eceatAe_ amt ,Id.lmAatAe_ ot etxeel ca:lepta.

epe_LL1y, IttlI mty be v_.d_od ill • (Jll_eflJJ.lllr.im of

qp_mt_l, d_ta ,t_m_t_re, _ _m _rrtyl. Li_l_d L+.*¢I t_l

• q_m_._1, filJ*, kn_r N_F_¢* o+ flay of • ,t,_ Wpe md

p,td.a"_eM an tlmt flm¢ cm be repreHs_tad by a ,t4re_.

re_enr._g dim tlmm _ ,_'ee_ v_lJ. enlsm=* tMe nodul_iqp

I]llid rex_tabi].At'y of ID& progrlll ©_l'*amta. Progz'm ca_ltarl_tad

I _I,_W ,ttareal_ _ Me eu£3.y rl=ae_£g_ur*4 for _ q_k_.c_Lnm by
I leublxt:ut_nq 8treui om_Ur_le (or foo_re),]IT _ llroceeeLng

I |preemaX emtzoL fl_,_ mid I_ kt_Li_htiaM tim data tMe+ flmm

I It.,e'me_ ,q, ttm _te.

I _' ,_rem mftmu'e ©wut'i._ of tm_ package, for =_*et.i:_ md

pulatA et_eel_. 1_dee t_ pecJ:agls (fare_or.zero

SI:alt:u.I : _,

Figure 9: Viewing the streams document

the words occurring in the query string. Relevance feedback has _+cn shown to be more effective

than boolean expression as a search mechanism for textual information (a report of one such study

appears in [6]).

::: Seie_ing a result doctttnent for _e_g:_¢ves the document from its server and displays it

in a window such as that shown in figure 9, which contains a portion of a document describing an

Ada implementation of a stream package. The find key button scrolls the windo w and highlights

in turn each occurrence of search words in the document. WAIS lets users specify an arbitrary pro-

gram on the user's machine as the viewer to be invoked for a given class of documents, with the

class defined using the suffix of the document's file name (for example, xgif is typically used to

display images whose names end in '.gif').

R

m

m

._=

m

m

+_

m

t

J

m

i

r

m

+--

m

w

Iterative refinement of a search that results in documents viewed with the text viewer is accom-

plished by selecting a salient portion of the document and clicking the add section button. An in-

dication of the text selected is added to the "Similar to" field in the question window. Subsequent

searches then append these refinements to the primary searchphrase.

w

3.3 - autoLib

The autoLib system, under development by Barrios Technology and NASA's Johnson Space

Center, is a monolithic application supported by a commercial relational database system (com-

prising the recta-information) and a UNIX file system (comprising the objects themselves). The

structure of information provided by arehie and WAIS is fiat in the sense that there is little structure

provided other that an indexing mechanism. The autoLib system, on the other hand, supports both

a flexible single inheritance mechanism for def'mition of recta-information, and the definition of

heterogenous collections of objects drawn from the inheritance scheme [1]. Figure 10 shows the

main window for autoLib, including the topmost collection and its immediate sub-collections.

-!..

L

._I
w

Clicking on an entry in the list moves the user down the hierarchy of collections to the corre-

sponding subcollection, and that collection's subeollections are then displayed. The three buttons

at the bottom of the window allow the user to step back up one level in the collection hierarchy, to

move directly to the top of the hierarchy, or to view the objects associated with the current collec-
, =

tion, respectively.

Figure 11 shows the object browser window, displaying the contents of one such collection.

The three columns of information include the object's identifier, its filename, and a .short title.

!

w

The object viewer window for object 2446 appears in figure 12. AutoLib employs a commer-

cial relational database package for information storage, but the user model for autoLib is object-

oriented, defined not only as a hierarchy of class definitions, where superclass names are prefixes

of subclass names, but also as a hierarchy of collections, as mentioned earlier. AutoLib maps each

9

m

W

Sioace Shuttle ProRram
DemonltratLon and Teot
J_nson 51:ace Center
Ames Remearch Cente_
LeeLs Research Center
H_S_ HeadQuarters
Space Station Proijram

Figure 10: autoLib main window

P_CZFIC OCl[.qll

IroIIl_T ! ctF

i 5ulxl_e))Plane-..ar_l Image((i)ata t

Figure 12: autoLib object viewer

concept (collection, class, object, etc.) into a corresponding database relation and maps _h field

in an autoLib _ndow (e.g., the object fflen_, _iO 1.GIF, for obj_ _+to an attribute in

the corresponding relation. The system derives the interpretation for a given object in the generic

object relation from the field def'mitions stored by autoLib in the class field relation. While this is

10

,i

m

J

I

m

J

+__

w

g

m

W

J

J

w

w

w

",ram

l

=

r T

l

w

Select Fu_tlon PageUp Page_ Help Clou

2446 O0000101.GIF PACIFIC OCEAN
4980 O0000101.GIF PACIFIC OCEP_4
4981 O0000102.GIF PACIFIC OCEAN
2447 O0000102.GXF I:_CXFIC OCEAN
2448 O00_)103.GIF PACIFIC OC_qH
4982 O(XX)OIO3.GIF PACIFIC OCEAN
4983 O¢O00104.GIF PACIFIC OCEAH
2449 O0000104.GIF PACIFIC OCEAN
2450 O(XX)OIOS.GIF PACIFIC OCEAN
4984 O0000105.GIF PACIFIC OCEAN
4985 O0000106.GIF PACIFIC OCEAN
2451 O0000106.GIF PACIFIC OCEAN
2452 O0000107.GIF PACIFIC OCEAN
4986 O0000107.GIF PACIFIC OC_AH
4987 O0000i08.GIF CHILE
2453 O000010e.GIF CHILE
2454 O0000109.GIF CHILE
4988 O0000109.GIF CHILE
4989 O0000110.GIF CHILE

2455 O0000110.GIF CHILE
2456 O0000111.GIF ARGENTINA
4990 O(XXX)lll.GIF ARGENTINA
4991 O0000112.GIF ARGEHTINA
2457 O0000112.GIF ARGEHTINA
2458 O0000113.GIF ARGENTINA
4992 O0000113.GIF ARGENTINA

4993 O0000114.GIF ARGENTINA
2459 O0000114.GIF ARGEHTIHA
2460 O0000115.GIF ARGENTINA
4994 O0000115.GIF ARGENTINA
4995 O0000116.GIF ARGENTINA
2461 O0000116.GIF ARGEHTINA

;_tKe I o¢ 211

Figure 11: autoLib object browser

not a true object-oriented database, it provides much of the flexibility and rich structural mecha-

nisms of a object-oriented database. The integration of objects and relations has been carried much

further in work on extensihle database systems such as POSTGRES [8].

In addition to the coUection browsing mechanism described here, autoLib supports traditional

boolean expression retrieval and a form of rclcvanc.¢ feedback. Each object class has associated

with it a tool, which is used to view the object itself, as opposed to the mctadata characterizing that

object, i.e., the fields presented in the object view window. Unlike WAIS, where tool execution

occurred on the user workstation, tool execution in autoLib occurs on the autoLib server- the user

workstation merely acts as an X-windows display.

4 - A Brief Comparison

Viewing these three systems as potential software repositories is interesting, and at the same

time somewhat unfair to their designers, as none were created with that purpose in mind. However,

11

I

systems such as these axe frequently called into service in such contexts, and the flexibility and

adaptability exhibited provides interesting concepts and features for inclusion into systems specif-

ically intended as repositories. Table 1 summarizes major aspects of the three systems. The popu-

atclllteCttlre

server sites

interfaces

retrieval mechanisms

information domain

information stored

archiving
responsibility

indexing
responsibility

support required
(archive)

support required
(indexing)

promise as a
repository

availability

Table 1: S
i

archie

,stems Synopsis::

WAIS autoLib

chent/server client/server monol_thtc

-I0 -100 1

X-Windows, X-W'mdows, X-Windows
ASCII ASCII (ASCII under development)

relevance feedbackpatlern-matching(on
name only)

material available by
anonymous ftp

name,

location,
file attributes

decentralized

centralized

nolle

moderate

pool"

textual infocmation

wold OCCtllTeal_,
headline,
full text

decentralized

decenwalized

moderate

low

limited

publ_public

browsing,
boolean expression,
relevance feedback (on
abstract only, not fulltext)

NASA flight center library
materials

full text / image,
index terms,
meta-information
(administrator-defined)

centralized

centralized

high

high

a potential framework

private

larity of arehie stems not from its rich representation scheme or novel search mechanisms, but

rather from the low levels of effort required on the part of archive administrators and users to em-

ploy the system. It is an excellent example of how a limited purpose system implemented by vol-

unteers can provide a valuable resource. Referring to archie as a software repository, however,

stretches the definition of repository perhaps a little too far. Consideration of an artifact at a site as

a candidate component requires that the user knows both the name and the purpose of that artifact,

and the retrieval of the complete artifact (irrespective of the total size) before further consideration

can be made.

_--ai

I

m

=

!
W

J

i

m

II

W

12
!

I

w. -

w

q

J

m

__q

= _

The display facilities of WAIS alleviate the limitations of archie by presenting the user with a

flexible means of query specification (without requiring classification by the archivist) and the op-

portunity to select from a variety' of candidates and view portions of them prior to retrieving the

complete text of the final selection. WAIS further increases flexibility in the nature of repositories

by supporting interrogation of multiple sources for a given query and the generation of both public

and private sources. (Note, however, that there is no technical impediment to doing this with archie

as well - the archie designers simply chose gl°bal indexing ratherthan regional or local indexing.)

The principle virtue of WAIS, its treatment of all material as text to be indexed, is also its principle

failingfrom our perspective- thereisno discriminationbetween code, supportingdocuments, and

so forth- resultingin slightlymore cumbersome searchbehavior.

The use of an administrator-defined set of collection and class definitions provides autoLib a

great deal of flexibility in organizing the information. In addition to the ability to organize the glo-

bal structure of the information base, this definitional facility supports recta-descriptions of arti-

facts, a useful feature in our chosen context.

The structuring, classification, and retrieval mechanisms of autoLib are by far the richest of the

three systems compared here. Much of this power obviously stems from the fact that autoLib is a

proprietary system, whereas archie is a volunteer effort and WAIS is a research project. However,

autoLib's look and feel suffers dramatically in our sample context. Unlike archie and WAIS, which

use a client/server paradigm, autoLib executes solely on the server platform. In wide-area domains

like the one in which our programmer operates, this results in slow display and update of windows,

and an inability for a user to select alternative viewing tools without the intervention of the repos-

itory administrator.

5 - Conclusions

This paper reviewed three example information retrieval systems currently in use by a broad

diversityof users.Ifocussed on computer-supported repositoriesforsoftwareartifacts(i.e.,com-

13

ponents, documents, test suites, executable images, etc.) rather than addressing the more broadly-

scoped notion of an information repository, which could easily encompass entities such as public

libraries.

!

While these systems were not explicitly designed as software repositories, they do each provide

some aspect of repository requirements. Each is a legitimate step forward in utility from early tech-

niques for wide distribution of software. This analysis leads to the following proposal for perceiv-

ing the current state of software repository efforts from the standpoint of information systems.

Generation 1 - Program Libraries

This includes not only traditional compiler iibraries, but also more distributed mechanisms

such as the Ada Software Repository [2] and the various archives for news groups such as

comp.sources.unix.

Generation 2 - Information Servers

Examples of this generation include archie, autoLib, _and WAiS. The emphasis:here is on the

indexing and retrieval mechanisms, rather than upon deep representation.

Generation 3 - Component Bases

Fine-grain characterization Of Components and interrelationships:distinguisheSthis generation.

The nature of reuse in this generation is compositional, and is typified by the Department of

Defense STARs efforts and the Japanese Software Factory projects.

Generation 4 - Software Knowledge Bases

This generation provides deep knowledge about representation, generation, and composition

of components and design schemes and the process of software development.

My separation criteria for repository generations involves the nature and accessibility of the

knowledge of each artifact that comprises the repository. Generations one and two provide wide

access to artifacts, but little supporting infrastructure (although it might be argued that autoLib

14

i,

Ill

J

m
w

J

t

M_

I

m

m

m

Ig

W

I

W

W

B

w

--=
w

could through the proper configuration efforts of a repository administrator be turned into a rudi-

mentary generation 3 system). Generations three and four provide increasingly rich information

concerning the nature of the artifacts contained within them. However, with this richness comes

increasing specialization of domain, and increasing difficulty in supporting interoperability be-

tween repositories. The component base services of today and the software knowledge base servic-

es of tomorrow should not loose sight of the design goals of today's successful information servers.

w

r 15

References

.

.

°

Barrios Technology, autoLib Automated Online Library Version 3 Product Overview, March

1990.

R. Conn, "The Ada Software Repository and Software Reusability," Proceedings of the Fifth

Annual Joint Conference on Ada Technology and Washington Ada Symposium, 1987, 45-53.

(Also appears inT_orial: Software Reuse: Emerging Technology, W. Tracz (ed.), IEEE

Press, 1988, 238-246.)

A. Emtage and P. Deutsch, "archie - An Electronic Directory Service for the Internet," Pro-

ceedings of USENIX, San Francisco, CA, January 1992, 93-1 I0.

4. B. Kahle, Wide Area Information Server Concepts, Thinking Machines Inc., November 1989.

,

,

,

,

.

C. Neuman, The Virtual System Model for Large Distributed Operating Systems, The Univer-

sity of Washington, 1989.

S. E. Robertson and K. Sparck Jones, "Relevance Weighting of Search Terms," Journal of

the American Society for Information Science, 27 (1976), 129-146.

M. F. Schwartz and D. C. M. Wood, "A Measurement Study of Organizational Properties in

the Global Electronic Mall Community," Technical Report CU-CS-482-90, University of

Colorado, Boulder, August 1990.

M. Stonebraker, L. A. Rowe, and M. Hirohama, "The Impiementation of POSTGRES," IEEE

Transactions on Knowledge and Data Engineering, 2, 1 (1990), 125-142.

W. Tracz, "Software Reuse Myths," ACM SIGSOFT Software Engineering Notes 13, 1(1988)

17-21.

10. P. Wegner, "C..apital-Intensive Software Technology," IEEE Software 1, 3 (1984) 7-45.

ill

7

J

R

111

I

m
g

w

IW

t!

I

g

W

16

II.

W

W

w

v

v

ip r

r

L

w

= _I

lw

Iw

_d

m
w

m

I

m
J

w

mP

w

Ii

W

IW

_jd

f •

_Wr

IW

9-12392

A Neural Net-Based Approach to

Software Metrics

=

==

w

L

w -

v

G. Boetticher, K. Srinivas, D. Eichmann t

Software Reuse Repository Lab
Department of Statistics and Computer Science

West Virginia University
{gdb, srini, eichmann}@cs.wvu.wvnet.edu

Correspondence to:

David Eichmann

SoRReL Group

Department of Statistics and Computer Science

West Virginia University

Morgantown, WV 26506

email: eichmann@ cs.wvu.wvnet.edu

fax: (304) 293-2272

w

w

w

= .

Submitted to the 4th International Conference on Tools With Artificial Intelligence, November 10-13,

1992, Arlington, Virginia.
t This work was supported in part by NASA as part of the Repository Based Software Engineering project,

cooperative agreement NCC-9-16, project no. RICIS SE.43, subcontract no. 089.

i

W

IW

v

g

W

m

W

w

J

m

l

W

Iw

m

W

m

H
m

IP

I

g

W

W

!1

w

= .

°

w

Abstract

Software metrics provide an effective method for characterizing

software. Metrics have traditionally been composed through the def-

inition of an equation. This approach is limited by the fact that all the

interrelationships among all the parameters be fully understood.

This paper explores an alternative, neural network approach to mod-

elhag metrics. Experiments performed on two widely accepted met-

tics, McCabe and Halstead, indicate that the approach is sound, thus

serving as the groundwork for further exploration into the analysis

and design of software metrics.

w_

i

w

w

J

w

1 - Introduction

W

V

As software engineering rnature---_a-t6 a true en_nee_ng _scipline, there is an increasing need

for a corresponding maturity in repeatability, assessment, and measurement-- of both the process-

es and the artifacts associated with software. Repeatability of artifact takes natural form in the no-

tion of software reuse, whether of code or of some other artifact resulting from a development or

maintenance process. -

Accurate assessment of a component's quality and reusability arc critical to a successful reuse

effort. Components must be easily comprehendible, easily incorporated into new systems, and be-

have as anticipated in those new systems. Unfortunately, no consensus currendy exists on how to

go about measuring a component's reUSability. One reas6n for this is our less than complete under-

standing of software reuse, yet obviously it is useful to measure something that is not completely

understood.

This paper describes a preliminary set of experiments to determine whether neural networks

can model known software metrics. If they can, then neural networks can also serve as a tool to

create new metrics. Establishing a set of measures raises questions of coverage (whether the metric

covers all features), weightings of the measures, accuracy of the measures, and applicability over

various application domains. The appeal of a neural approach lies in a neural network's ability to

model a function without the need to have knowledge of that function, thereby providing an oppor-

tunity to provide an assessment in some form, even ff it is as simple as t/us component is reusable,

and that component is not.

We begin in section 2 by describing two of the more widely accepted software metrics and then

in section 3 briefly discuss various neural network architectures and their applicability. Section 4

presents the actual experiment. We draw conclusions in section 5, and present prospects for future

work in section 6,

I

llW

J

ip

l

w

-j

W

llml"

U

W

W

°

L--

v

t.--

.

-

w

r

2 - Software metrics

There are currently many different metrics for assessing software. Metrics may focus on lines

of code, complexity [7, 8], volume[N, or cohesion [2, 3] to name a few. Among the many metrics

(and their variants) that exist, the McCabe and Halstead metrics are probably the most widely rec-

ognized.

The McCabe metric measures the number of control paths through a program [7]. Also referred

to as cyclomatic complexity, it is defined for a program G as [8]:

v(G) = number of decision statements + 1

assuming a single entry and exit for the program, or more generally as

v(G) = Edges -Nodes + 2. Units

where Edges, Nodes, and Units correspond respectively to the number of edges in the program

flow graph, the number of nodes in the program flow graph, and the number of units (procedures

and functions) in the program.

The Halstead metric measures a program's volume. There are actually several equations asso-

ciated with Halstead metrics. Each of these equations is directly or indirectly derived from the fol-

lowing measures:

n 1 the number of unique operators within a program (operators for this experiment in-

clude decision, math, and boolean symbols);

N 1 the total number of operators within a program;

n2 the number of unique operands in a program (including procedure names, function

names, variables (local and global), constants and data types); and

N 2 the total number of operands in a program.

The measurements for a program axe equal to the sum of the measurements for the individual mod-

ules.

Based on these four parameters, Halstead derived a set of equations, which include the follow-

2

I

ing (in which we are most interested):

Actual Length:

Program Volume: "

Program Effort:

N=N 1 +N 2

V = N- log2(n)

E = V/(2. n 2)

Traditionally, software metrics are generated by extracting values from a program and substi-

tuting them into an equation. In certain instances, equations may be merged together using some

weighted average scheme. This approach works well for simple metrics, but as our models become

more sophisticated, modeling metrics with equations becomes harder. The traditional process re-

quires the developer to completely understand the relationship among all the variables in the pro-

posed metric. This demand on a designer's understanding of a problem limits metric sophistication

(i.e., complexity). For example, one reason why it is so hard to develop reuse metrics is that no one

completely understands "design for reuse" issues.

The goal then is to f'md alternative methods for generating software metrics. Modeling a metric

using a neural network has several advantages. The developer need only to determine the endpoints

(inputs and output) and can disregard (to an extent) the path taken. Unlike the traditional approach,

where the developer is saddled with the burden of relating terms, a neural network automatically

creates relationships among metric terms. Traditionalists might argue that you must fully under-

stand the nuances among terms, but full understanding frequently takes a long time, particularly

when there are numerous variables involved.

We establish neural networks as a method for modeling software metrics by showing that we

can model two widely accepted metrics, the McCabe and the Halstead metrics.

3 - Neural Networks

Neural networks by their very nature support modeling. In p_cuiar, there are many applica-

tions of neural network algorithms in solving classification problems, even where the classification
z

3

gl

W

W

g

W

W

lm,

I

f

lint

Y

m

g

It

=

W

W

W

boundaries are not clearly defined and where multiple boundaries exist and we desire the best. It

seems only natural then to use a neural network in classifying software.

There were two principle criteria determining which neural network to use for this experiment.

First, we needed a supervised neural network, since for this experiment the answers are known.

Second, the network needed to be able to classify.

v

7, .

S--

v

- i

The back-propagation algorithm meets both of these criteria [9]. It works by calculating a par-

tial first derivative of the overall error with respect to each weight. The back-propagation ends up

taking infinitesimal steps down the gradient [4]. However, a major problem with the back-propa-

gation algorithm is that it is exceedingly slow to converge [7]. Fahlman developed the quickprop

algorithm as a way of using the higher-order derivatives in order to take advantage of the curvature

[4]. The quick-prop algorithm uses second order derivatives in a fashion similar to Newton's meth-

od. From previous experiments we found the quiekprop algorithm to clearly outperform a standard

back-propagation neural network.

While an argument could be made for employing other types of neural models, due to the line,at

nature of several metrics, we chose quickprop to ensure stability and continuity in our experiments

when we moved to more complex domains in future work.

4 - Modeling Metrics with Neural Networks

As mentioned earlier, the goal of the experiment is to determine whether a neural network

could be used as a tool to generate a software metric. In order to determine whether this is possible,

the first step is to determine whether a neural network can model existing metrics, in this case Mc-

Cabe and Halstead. These two were chosen not from a belief that they are particularly good mea-

sures, but rather because they are widely aeeepted, public domain programs exist to generate the

metric values, and the fact that the MeCabe and l-Ialstead metrics are representative of major metric

domains (complexity and volume, respectively).

4

Sinceour long termgoalof theexperimentis to determinewhetheraneuralnetworkcanbe

usedto modelsoftwarereusabilitymetrics,Ada,with itssupportfor reuse(generics,unconstrained

arrays,etc.)seemedareasdSnablechoicefor ourdomainlanguage.Furthermore,theamplesupply

of publicdomainAdasoftwareavailablefrom repositories(e.g.,[1]) providesarich testbedfrom

whichto drawprogramsfor analysis.

Finally, programsfrom severaldistinctapplicationdomains(e.g.,abstractdatatypes,program

editors,numericutilities, systemorientedprograms,etc.)wereincludedin thetestsuiteto ensure

variety.

We ranthreedistinctexperiments.Thefirst experimentmodeledtheMcCabemetricon single

procedures, effectively fixing the unit variable at 1. The second experiment extended the first to

the full McCabe metric, including the unit count in the input vector, and using complete packages

as test data. The third experiment used the same test data in modeling the Halstead metric, but a

different set of training vectors.

4.1 - Experiment A: A Neural McC be metric for Procedures

In this experiment all vectors had a unit value of one, so the unit column was omitted. In build-

ing both the training and test sets all duplicate vectors and stub vectors (i.e., statements of the form

"PROCEDURE XYZ IS SEPARATE") were removed. The input for all trials in this experiment

contained 26 training vectors and 8 test vectors (the sets were disjoint). Each training vector cor-

responded to an Ada procedure and contained three numbers, the number of edges, the number of

nodes, and the eyclomatic complexity value.

• : _ = _ _- _ _ • _!

The goals of this f'wst expe_ht Were to estab_s=h whether a neural network Can be used to

model a very simple metric function (the McCabe mettle on a procedure basis) and to examine the

influence neural network architecture has on the results. The input ran under 6 different architec-

tures: 2-1 (two input layers, no hidden layers, and one'output layer), 2-1-1 (two input layers, one

5

I

g

m

lie

W

i

w

i

H
g

m
zE

W

I

V

I

J

L

14

C'slc_'d'l_"at10_' _ i, '

8

6

4

2

0

0 2 4 $ II 10 12 14

Rcb_l

Figure I: McCabe Results for Single Procedures

hidden layer, and one output layer), 2-2-1, 2-3-1, 2--4-1, and 2-2-2-1. In order to examine the impact

of architecture, other parameters remained constant. Alpha, the learning rate, was set to 0.55

throughout the trials. An asymsigmoid squashing function (with a range of 0 to +1) was used to

measure error. Finally, each trial was examined during epochs 1000, 5000, and 25,000. Figure 1

presents the results of these trials. In the graph, the neural calculated values are plotted against the

actual values for the metric at 25,000 epochs °. In an ideal situation, all lines would converge to x

= y, indicating an exact match between the actual McCabe metric (calculated using the traditional

equation) on the x-axis, and the neural calculated McCabe metric on the y-axis.

This experiment provides good results considering the minimal architectures used. Most points

tend to cluster towards the actual-calculated line regardless of architecture selection. This suggests

that more complex architectures would not provide dramatic improvements in the results.

Considering that only 26 training vectors were used, the results were quite favorable, and we

moved on to the next experiment.

In fact, all figures in the paper correspond to the results following 25,000 epochs.

6

=

g

4.2 - Experiment B: A Neural McCabe Metric for Packages

The second experiment:modeled the McCabe metrics on a package body basis. Changes in data

involved the addition of another input column corresponding to the number of units (the number

of procedures in an Aria package) and the selection of a slightly different set of training vectors,

chosen to ensure coverage of the added input dimension.

The experiment ranged over five different architectures (3-3-1, 3-5-1, 3-10-1, 3-5-5-1, and

3+5-5-1 (hidden layers are connected to all previous layers)) and four training sets (16, 32, 48, and

64 vectors). Each smaller training set is a subset of the larger training set, and training and test sets

were always disjoint. Alpha remained constant at 0.55 throughout the trials. Once again, we used

an asymsigmoid squashing function in every trial. Data was gathered at epochs 1000, 5000, and

25,000.

We selected vectors for the test suite to ensure variety both in the number of units in the pro-

gram and in the nature of the program (number crunching programs tend to provide higher cyclo-

matic complexity values than I/O-bound programs). For a given package body, its cyclomatic

complexity is equal to the sum of the cyclomatic complexities for all its procedures.

Some packages contained stub procedures. These stub procedures generate an edge value of

zero and a node value of one and thus produce a cyclomatic complexity of 1. Stub procedures did

not seem to adversely affect the training set.

The four figures below depict the results first when neural network architectures remain_ con:

stant and training set size varies and second when training set size remains constant and neural net-

work architectures vary.

• - - L_

As the training set increases, the results converge towards the x = y line, indicating a strong

correspondence to the actual McCabe metric. This behavior occurs in all architectures; we show

the 3-3-1 architecture in Figure 2, and the 3+5-5-1 architecture in Figure 3. Except for the initial

7

!

W

u

V

L=

W

u

U

i
i

!

w

w

L

4SO

400

3OO

_0

_00

100

SO

0

"32--_'_¢'1-3-3" l-r_h I t'Ktur'e • d_°

_" "d._ct_rt_3-3-Lrchl '-,'ture .d_" -e---

If I i I I I I = X:i_" dlt =I

-.6-.-

50 100 150 200 25O 3)0 3r_ _0 450

Act_l! NcCd:e

Figure 2: The 3-3-1 Architecture

, • , , • , , • •

r.loull_ .

_60

3OO

25O

_O

L_) _ "]_.'.l¢t,l'l_3_r_-r'_Lir_ I tl¢turl • dit"

"48._ctl'_.3_5-5-Lu'_ I tllctu_, d_" -e-

100 // "s,._-,_3-s-s-L,_,_,-,._" --

0 r , , " • I I I I I I

SO 100 LSO 200 250 3OO 35O _0

Figure 3: The 3+5-5-1 Architecture

improvement after 16 vectors, there is no significant improvement of results in the other three tri-

als. This suggests that relatively low numbers of training vectors are required for good perfor-

mance.

Furthermore, as shown in Figure 4 for 16 training vectors and Figure 5 for 64 training vectors,

network architecture had virtually no effect on the results. These strong results axe not surprising,

given the linear nature of the McCabe metric.

r_lcu

* / "-,._.'.._-3-t-.,_,=_._ ° _,
150 ! ._" °l$._ctar_._"4-L.r_hl_.d*t" '.*'-,

1_ /_#- "lS-v_t_r'_-_"Jr_S-I -arch1 t.*ct_'_ • d_t" "-,

O' " [• = i i & I

Figure 4:16 Training Vectors for all Architectures

0 SO 100 150 200 2_ 300 $50

e,et_l

Figure 5:64 Training Vectors for all Architectures

4.3 - Experiment C: A Neural Halstead Metric for Packages

4OO

Based u_n the results 0fthe fLrSt tWO experiments, we assumed for this experiment that if the

experiment worked for packages, then it also worked for procedures, and further, that the increas-

ing the number of _g set vectors improves upon the results. Therefore, the focus of this ex-

periment was on varying neural network architectures over a fixed-size training set.

9

I

W

m

11

V

_k

l

l

I

7_
I

g

i

1

¢!

tl

I

w

w

_T

!

8OOO

¢

0

• , , , , , , ,

I Voli

"4-5-3_Ar_I te_nJ_oVOluJu, dt.a" -4--

¢L-_a._e I _l_Jw

Figure 6: Volume Results, Broad Architectures

tileoo

Cal_la*..

t$0oo

140oo

10ooo

8ooo

sooo

40oo

2ooo

o

¢k-t.ull Vol_

Figure 7: Volume Results, Deep Architectures

The experiment ranged over seven different neural network architectures broken into three

groups: broad, shallow architectures (4-5-3, 4-7-3, and 4-10-3), narrow, deep architectures (4-7-7-

3 and 4-7-7-7-3), and narrow, deep architectures with hidden layers that connected to all previous

layers (4+7-7-3 and 4+7+7-7-3). We formed these three groups in order to discover whether there

was any connection between the complexity of an architecture and its ability to model a metric.

Figures 6, 7, and 8 present the results for the Halstead volume for broad, deep, and connected

10

11

190100 , , , , , ,

r_loulQ_ I Vo!_

150OO

14000

120OO

1000_

8OOO

6000 / "4*?'?'3"/_r_ltlctu_-i_°r-V°lum "dr4" "_'- t

0

o _ +4ooo 6ooo _ i_ooo K_oo 14ooo 16ooo leOO¢

Ac_l Vol_

Figure 8: Volume Results, Connected Architectures

architectures, respectively. Note that both the broad and deep architectures do moderately well at

matching the actual Halstead volume metric, but the connected architecture performs significantly

better. Furthermore, there is no significant advantage for a five versus four layer connected archi-

tecture, indicating that connecting multiple layers may be a sufficient condition for adequately

modeling the metric.

This pattern of performance also held for the Halstead length metric and the Halstead effort

metric, so we show only the results for the connected architecture in Figure 9 and Figure 10, re-

spectively.

5 - Conclusions

The experimental results clearly indicate that a neural network approach for modeling metrics

is feasible. In all experiments the results corresponded well with the actual v_ue s calcu!atedby

traditional methods. Both the data set and the neural network architecture reached performance sat-

uranon points in the McCabe metric. In the Halstead expenYment, the faci that the results oscillated

over the actual-calculated line indicate that the neural network was attempting to model the desired

values. Adding more training vectors, especially ones containing larger values, would smooth out

11

I

m

m

!

i

Ir

m
m
I

uJ_

Ill

W

m

g

I
m

i
W

m ¸
i

I

I

'U
W

t

l
W

=

7

L_

• 4-7-7-3_ I t *¢_.fer_LJ,'q)t h. m *" -,--

"4*7*7-7-3_l_r'd_l t *¢t ur *_fer .J.4nl_ .dr4" .*.--

" i ! !

Figure 9: Length Results, Connected Architectures

the oscillation.

Ca t'ffo-.t.

i

300000 ["4.7-7-3_1¥'_ | tlctur_, far'.JE f fcr't, d_"

"4.7.7-7-3._'_1 t4ctureofcr_f fort .dr4"

O l I i I I I I |

0 I00C00 _ 300000 400000 _ GO00OO _ _ 9000_

tltetml Ef fa,-t

Figure 10: Effort Results, Connected Architectures

6 - Future work

Applying this work to other existing metrics is an obvious extension, but we feel that the de-

velopment of new metrics by applying neural approaches is much more significant. In particular,

expanding this work to the development of a reusability metric offers great promise. Effective re-

12

use is only possible with effective assessment and classification. Since no easy algorithmic solu-

tions currently exist, we've turned to neural networks to support the derivation of reusability

metrics. Unsupervised learning provides interesting possibilities for this domain, letting the algo-

rithm create its own clusters and avoiding the need for significant human intervention.

Coverage and accuracy are important aspects of developing a neural network to model a soft-

ware reuse metric. McCabe and Halstead metrics are interesting and useful, but they do not provide

coverage regarding reusability. We need to expand the number of parameters in the data set in or-

der to provide adequate coverage with respect to reusability of a component. We also would like

to improve the accuracy of answers by enlarging our data sets to include possibly hundreds of train-

ing set vectors. This will ne-edto be arequirement whenexpioring more complex metric scenarios,

and the cost of such extended training is easily borne over the expected usage of the metric.

Finally, it is possible to explore alternative neural network models. For example, the cascade

correlation model [5] dynamically builds the neural network architecture, automating much of the

process described here.

References

[1]

[2]

[3]

[41

Conn, R., "The Ada Software Repository and Software Reusabilityi" Proc. of the Fifth Annu-

al Joint Conference on Ada Technology and Washington Ada Symposium, 1987, p. 45-53.

Emerson, T. L, "A_is_minant Metric for Module Cohesion," Proc. 7th International Con-

ference on Software Engineering, Los Alamitos, California, IEEE Computer Society, 1984 p.

294-303.

Emerson, T. J., "Program Testing, Path Coverage, and the Cohesion Metric," Proc. of the 8th

Annual Computer Software and Applications Conference, IEEE Computer Society, p. 421-

431.

Fahlman, S. E., An Empirical Study of Learning Speed in Back-Propagation Networks, Tech

Report CMU-CS-88-162, Carnegie Mellon University, September, 1988.

13

W

,16

w

w

I

W

1it

11,

!

w

m

g

t
W

i
J

ii

!

m

I

lff

w

_r

r

L

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Fahlman, S. E. and Lebiere, M., The Cascade-Correlation Learning Architecture, Tech Re-

port CMU-CS-90-100, Carnegie Mellon University, August 1991.

Halstead, M.H., Elements of Software Science, New York: North-Holland (Elsevier Comput-

er Science Library), 1977.

Hertz, J., Krogh A., Palmer, R. G., Introduction to the Theory of Neural Computation, Add-

ison Wesley, New York, 1991.

Li, H.F. and Cheung, W.K., "An Empirical Study of Software Metrics," IEEE Transactions

on Software Engineering, (13)6, June 1987, p. 697-708

Lippmann, R. P. "An Introduction to Computing with Neural Nets," IEEE ASSP Magazine,

April 1987, p. 4-22.

McCabe, T.J'., "A complexity measure," IEEE Transactions on Software Engineering, (SE-

2) 4, Dec. 1976, p. 308-320.

McCabe, T.J., "Design Complexity Measurement and Testing," Communications of the

ACM, (32)12, December 1989, p. 1415-1425.

w

z --

14

II

I

N

I

i

I

I

Iw

I

I

U

I

1

m

i

I

W
w

I
I

I

i
i

w

iv

wv

L_

:_

I

W

'qlW

New

i

,aqp,

iw

=

N93-12393
Balancing Generality and Specificity in

Component-Based Reuse *t

David Eichmann and Jon Beck

Software Reuse Repository Lab

Dept. of Statistics and Computer Science

West Virginia University

Send correspondence to:

David Eichmann

SoRReL

Dept. of Statistics and Computer Science

West Virginia University

Morgantown, WV 26506

Ernail: eichmann@ cs.wvu.wvnet.edu

L--

uJ

w

_.m

=

Submitted to The International Journal of Software Engineering and Knowledge Engineering.
? This work was supported in part by NASA as partof the Repository Based Software Engineering project,

cooperative agreement NCC-9-16, project no. RICIS $E.43, subcontract no. 089 and in part by a grant from
MountainNet Inc.

%

Abstract

For a component industry to be successful, we must move be-

yond the ct/f-rent techniques of black box reuse and genericity to a

more flexible framework supporting customization of components

as well as instantiation and composition of components. Customiza-

tion of components strikes a balance between creating dozens of

variations of a base component and requiring the overhead of unnec-

essary features of an "everything but the kitchen sink" component.

We argue that design and instantiation of reusable components have

competing criteria - design-for-reuse strives for generality, design-

with-reuse strives for specificity - and that providing mechanisms

for each can be complementary rather than antagonistic. In particu-

lar, we demonstrate how program slicing techniques can be applied

to customization of reusable components.

!

w

W

m

w

m

m

I

m

J

mRw
m

w

mm

W

m
!

l

!

L=

lW

i

w

W

!
w

w

L

w

=

7

1 - Introduction

The impediments to a successful reuse infrastructure in the software engineering community

have typically been separated into social and technological issues [26]. Furthermore, the social is-

sues (e.g., comprehension, trust, and investiture) often are characterized as being the more critical,

as there is a perception that all of the technical issues (e.g., environments, repositories, and linguis-

tic support) have been solved [27]. We do not agree with this assessment (see [8] for our arguments

regarding repositories and environments), and furthermore believe that appropriate application of

technology can alleviate certain of the social issues just mentioned.

This paper addresses two reuse impediments-component comprehension by a reuser [14] and

the fitness of a component for a given application- and how technical support, in this case lan-

guage featuresandprogram slicing,alleviatetheseimpediments.Thesetwo impedimentsdrivethe

consumer sideof reuserepositorydesign,forwithoutcomprehensibilityuserswillnot selectarti-

factsfrom the repository,and withoutadequate conformance torequirementsuserswillnot incor-

porateartifactsintosystems even iftheydo selectthem. These two impediments alsodrivethe

designprocessforreusablecomponents, sincecomponents perceivedas ill-suitedforreusers'ap-

plicationdomains (and hence not incorporatedintotheresultingsystems)have notmet therequire-

mcnts of a design-for-reuseeffort.

We begin in section 2 by characterizing the inherent conflict between the design goals for de-

sign-for-reuseand design-with-reuse.We thenreviewmechanisms thatsupportparticularstructur-

al and behavioral aspects of component design in section 3. The mechanisms described support

flexibility in the design of a component. We consider mechanisms in section 4 to constrain an im-

plementation, supporting specificity in the instantiation of a component, and show in section 5 how

to employ program slicing as one such mechanism. Section 6 demonstrates the application of our

technique to a moderate-sized example.

Balancing Generality and Specificity 1 4/30/92

v

2 - Design-For-Reuse versus Design-With-Reuse

g

==

Design for reuse focuses on the potential reusability of the artifacts of a design process. Design

with reuse, on the other hand, focuses on employing existing artifacts wherever possible in the de-

sign process. The intent of the two approaches, and hence the various criteria that each of them em-

ploy, is then quite distinct. In particular, design for reuse strives for generality, even to the point of

additional cost to the current project, and design with reuse strives to reduce cost to the current

project, even to the point of adapting non-critical project requirements to achieve conformance

with existing artifacts.

Garner and Mariani proposed the following attributes for reusable software [10]:

• environmental-lndependence "nodependen_On ihe origln_development environment;

• high cohesion - implementing a single operation or a set of related operations;

• loose coupling - minimal links to other components;

• adaptability - easy customization to a variety of situations;

• understandability;

• reliability; and

• portability.

These attributes clearly reflect goals that should apply to all productsof adeslgn-for-reuse effort,

and some of these attributes (particu!_ly understandability and reliability) apply to all software de-

velopment efforts. Not so clear is whether these attributes reflect the goals of design-with-reuse

efforts.

We contend that there is an inherent conflict between design-for-reuse and design-with-reuse

that centers upon adaptability. Design-for-reuse strives to create artifacts that are as generally ap-

plicable as possible, _ the worst case creating %verything-but-the-kitchen-s_mk '' artifacts, loading

a component with features in an effort to ensure applicability in all situations. Design-with-reuse

strives to identify that artifact which most specifically matches a given requirement. Anything less

m

p

J

n

qlP

I

i
i

m
w

gro-

g

n
ll

m

ii

I!

m

IB

m
i!

!
W

m

m

II
Balancing Generality and Specificity 2 4/30/92

m

I

W

F
w

w

requires additional effort, both in comprehension and coding. Anything more carries with it the

penalty of excess resource consumption and increased comprehension effort.

The specificity that we seek in design-with-reuse takes two forms - the f'trst is that of avoiding

additional functionality in a simple component; the second is that of avoiding additional function-

ality in an abstraction, implemented as a package/module. Specificity becomes increasingly critical

when considering scale. The additional storage consumed and increased comprehension effort

posed by a simple abstract data type quickly become the multi-megabyte "hello world" applica-

tions of today's user interface management systems, and threaten intractability in the domain of

megaprogramming [4, 19].

3- Language Mechanisms Supporting Design-For-Reuse

Designing a software component for reuse involves a number of issues, including analysis of the

intended target domain [21, 22], the coverage that this component should provide for the domain

[22], and the nature and level of parameterization of the component [7, 28, 29]. A number of de-

velopments in programming language design directly bear upon these issues. We focus here upon

those we see as most beneficial.

3.1 - Procedural and Modular Abstraction

The obvious advantages that functions and procedures provide in comprehension and reuse of

portions of a program (even if the reuse is only at a different location in the same program) are so

well recognized, that no contemporary language proposal is taken seriously without them. The

package (or module) concept, with separate specification and implementation of a collection of

data and procedural definitions, has arguably reached the same level of acceptance. Sommerville's

list of classes of reusable components (functions, procedures, declaration packages, objects, ab-

stract data types, and subsystems) [25] indicates the depth of this acceptance - virtually every class

listed is directly implementable using one of the two mechanisms (objects being the only non-ob-

vious fit).

Balancing Generality and Specificity 3 4/30/92

3.2 - Parameterization and Genericity

The utility of a function or procedure is severely limited without the ability to provide infor-

marion customizing the effect of a specific invocation. Parameters comprise the explicit contract

between a function and its invocations, and are generally accepted as far preferable to the implicit

contract provided by shared global state. Genericity, or more formally, parametric polymorphism

[6], involves the parameterization of program units (both functions/procedures and packages/mod-

ules) with types, variables, and operations (functions, procedures, tasks, and exceptions). Parame-

ters effectively support families of invocations. Genericity extends this support to families of

instantiations, each with its own family of invocations, providing increased _ptability and port-

ability [28].

3.3 - Inheritance

Inheritance involves the creation of generalization/specialization slructures, a tree in the case

of single inheritance, a lattice in the case of multiple inheritance. These gene_zations/specializa-

tions may be structural (in the case of subtypes [6]) or behavioral (in the case of classes [11]).

Whatever the structuring mechanism, inheritance supports the creation of variations of a base com-

ponent, each with its own interface [15], as well as instances of those variations. Inheritance thus

is a very useful mechanism for the creation of certain classes of software artifacts. Note, however,

that using inheritance as a reuse-enabling mechanism is not without its own hazards, most notably

scalability and the violation of information hiding [23, 24].

4 - Language Mechanisms Supporting Design-With-Reuse

The previous section primarily addressed the creation of program structure. Our primary inter-

est in this section involves not the creation of new reusable components, but ra_er their natural

involvement in the development process. This corresponds to the responsibilities of Basili's project

organization [3].

!1

m

W

m

J¢

i

g

I

g_

_w
e

11
II

II

m

W

!

W

m

!
!m

lib

l

m

lp

__11
m

=
!

I

'li'

I
w

Balancing Generality and Specificity 4 4/30/92

w

4.1 - Procedural and Modular Abstraction

Much of today's reuse takes place at the level of procedures and packages, either as source or

object code. The linguistic and environmental mechanisms for this, including source and object li-

braries and separate compilation, provide little over what a simple text editor with cut and paste

commands provides. The onus of comprehension and adaptation is placed upon the reuser, partic-

ularly if the reuser is interested in increasing the specificity of the component (which may even be

proscribed by the social infrastructure, i.e. management). The consequence of design-with-reuse in

this context is thus monolithic reuse, an all or nothing acceptance of an entire component.

w

4.2 - Genericity

Genericity readily supports the creation of specializations of the generic artifact through instan-

tiation. However, genericity as defined in languages such as Ada provides little beyond complete

instantiation of a generic component into a completely concrete instance. Further, partial instanti-

ation does little in terms of additional flexibility, as every successive partial instantiation makes

the resulting generic more concrete. Hence genericity provides the same form of monolithic reuse

as that described in the previous section, with the option of customizing the instances.

4.3-_heH_n_

Inheritance performs as readily in support of a reuser as in support of a developer of compo-

nents. The reuser can both instantiate new instances of the component and derive new component

classes from the original. This second issue is a particularly beneficial one, as it allows for the de-

velopment of unanticipated refinements to the program model without requiring adaptation of ex-

isting code. However, inheritance exhibits the same specificity limitations as abstraction and

genericity, supporting only monolithic reuse, in the case of instantiation, or incremental monolithic

reuse, in the case of class refinement.

Balancing Generality and Specificity 5 4/30/92

5- Program Slicing

m

I

The mechanisms discussed in sections 3 and 4 add structure and/or complexity to a program.

Parameterization and genericity increase the interface complexity of a program unit. Packages and

inheritance increase either the number of program units or the structural complexity of those units.

Hence, current languages do not have explicit mechanisms that address the conflicting goals of de-

sign-for-reuse and design'Mth-reuse. We therefore propose a new mechanism for reconciling the

two approaches (by increasing component structural specificity) which works in conjunction with

the facilities provided in Ada- a new form of program slicing. We use Ada for our examples, as it

is a language whose built-in features facilitate the types of transformations which we invoke. How-

ever, the concepts we present are not confined to any particular language.

In his thesis [30], Weiser introduced the concept of program slicing. In this form of slicing,

called static slicing, a slice of a pro_ is an executable subset of the source statements which

make up program. A slice is specified by a variable and a statement number, and consists of all

statements which contribute to the value of that variable at the end of execution of that statement,

together with any statements needed to form a properly executing wrapper around the slice proper.

Dynamic slicing, [1, 2, 17] is a second form of slicing which is determined at runtime and is

dependent on input data. A dynamic slice is the trace of all statements executed during a program

run usinga p_c_ar input_--L m_ byspe_ying only those executed statements which

reference a specified set of variables. Dynamic slicing was specifically designed as an aid in de-

bugging, and is used to help in the sea_h for offending statements in finding a program error.

By definition, static slicing is a pre-compilation operation, while dynamic slicing is a run-time

analysis. Our interface slicing belongs in the category of static slicing, as it is a data-independent

pre-compilation code transformation. Since our interest here is only with static slices, henceforth

we will use slicing to mean static slicing, and we will not again discuss dynamic slicing.

'IB

W

m
m

i
l w

g

II

II

!

Ill

m

m

i

W

!
!

Ill

il

!

--=_
I!

ig

!

W

Balancing Generality and Specificity 6 4/30/92

|

L _

w

1 procedure wc (theFile : in string; nl,

2 inword : boolean := FALSE;

3 theCharacter : character;

4 file : file_type;
5 begin ""

6 open(file, IN_FILE, theFile);

7 while not end_of_file(file) loop

8 get(file, theCharacter);

9 nc := nc + i;
10 if theCharacter = LF then

ii nl = nl ÷ i;

12 end if;
13 if theCharacter = ' '

14 or theCharacter = LF
15 or theCharacter = HT then

16 inWord = FALSE;

17 else if not inWord then

18 inWord = TRUE;
19 nw = nw + I;

20 end if;

21 end loop;
22 close(file);

23 end wc;

nw, nc : out natural := 0) is

Figure I: wc, a procedure to count text

5.1 - Previous Work in Slicing

In his thesis [30] and subsequent work [31, 32, 33], Weiser used slicing to address various is-

sues primarily concerned with program semantics and parallelism. Gallagher and Lyle more re-

cently employed a variation of slicing in limiting the scope of testing _u_ during program

maintenance [20].

Program slicing has been proposed for such uses as debugging and program comprehension

[32], parallelization [5], merging [12, 18], maintenance, and repository module generation [9].

As an example of program slicing, we present the following example, adapted from Gallagher

& Lyle [9]. The procedure wc, presented in Figure 1, computes the count of lines, words, and char-

acters in a file.* Figure 2 gives the results of slicing wc on the variable nc at the Last line of the

procedure. Since the variables nl, nw, and inword do not contribute to the value of nc, they do

not appear in the slice. Also, the statements on lines 10 through 20 of the original procedure do not

" This procedure is not entirely correct, since the Ada &etpcocodureskips ores line terminators, unlike the C
getchar function. We adapted wc M thisway to clarify its actions and retainthe flavor of the original function.

Balancing Generality and Specificity 7 4/3O/92

1 procedure wc (theFile : in string; nc
2 theCharacter : character;

3 file : file type;
4 begin

5 open(file,' IN_FILE, theFile);

6 while not end_of_file(file) loop

7 get(file, theCharacter);

8 nc := nc + i;
9 end loop;

i0 close(file);

II end wc;

: out natural := 0) is

Figure 2: wc slicedon nc

appear in the slice. While this slice follows the spirit of a Classic slice, and will serve to illustrate

classic slicing, it also differs in several important ways, as described below.

5.2 - Interface Slicing

We propose a new form of slicing, interface slicing, which is performed not on a program but

on a component. Similar to previous work in static slicing, our interface slice consists of a eompil-

able subset of the statements of the original program. The interface slice is defined such that the

behavior of the stztements and the Values of the variables in the Slice is identical to their behavior

and values in the original program.

However, while previous slicing efforts have attempted to isolate the behavior of a set of vari-

ables, even across procedural boundaries, our slice seeks rather to isolate portions of a component

which export the behavior we desire. In the following discussion, we assume for simplicity that a

package implements a single ADT, and we use package and ADT interchangeably.

Unlike standardslicingtechniqueswhich are usuallyappliedtoan entireprogram, interface

slicingisdone on a fragment of aprogram - a component- sinceour goal isto empioy theneces-

11

w

'rob

J

P

I

I
m

w

R

I

J

I
l

w

i
11

I
i

g

m

sa_ and sufficient semantics of a component for use in the target system. Interface slicing is at the

level of proced_s; Nnetions, and __s. Ifa __ is invoked at all, the entire procedure

must be included, as we have no w_,y of kno_g a prLori what portion of the pr_ _ be

needed. However, if an ADT is incorporated into a sys_ not needy all of its operations are

!

m

li

m
z
i

Balancing Generality and Specificity 8 4/30/92

R
m

W

v

r__

E_

invoked. The interface slicing process determines which operations are to be included, and which

can be eliminated. Because interface slicing treats procedures atomically, the complex program de-

pendence graph analysis of standard slicing [13] is not necessary. A single pass of the call graph

of an ADT's operations is sufficient to determine the shce. We use "operation" as a general term

to encompass procedures, functions, and exceptions, and include tasks with procedures in that a

task is another way of encapsulating a subprogram unit.

We will illustrate the concept of interface slicing first by examining a simple example, a toggle

ADT. First consider package togglel, in Figure 3. This package exports the public operations

on, off, set, and reset. On and off are examination operations which query the state of the

toggle, while set and reset are operations which modify the state of the toggle. Now suppose

that we wish to have a toggle in a program which we are writing, but we have a need for only three

of the four operations, namely on, set, and reset. In standard Ada, we have two choices. We

can include the package as is, and have the wasted space of the off operation included in our pro-

gram. This is the kitchen sink syndrome. Alternatively, we can edit the source code manually (as-

suming we have access to i0 and remove the o f f operation, thereby saving space, but requiring a

large amount of code comprehension and introducing the danger of bugs due to hidden linkages

and dependencies. In both these cases, we see the generality of design-for-reuse competing with

the desired specificity of design-with-reuse.

Instead, we propose the invocation of an interface slicing tool to which we give the togglel

package together with the list of operations we wish to include in our program. The tool then au-

tomatically slices the entire package based on the call graph of its operations, generating a slice

containing only those operations (and local variables) needed for our desired operations. The slice

of toggle1 which contains only the three operations is shown in Figure 4.

lit

In other words, an interface slice is orthogonal to a standard static slice. The use of one
technique neither requires nor inhibits the use of the other. We are not discussing the tech-

nique of standard static slicing here, other than to contrast it with our interface slice, and so

we do not assume that an interprocedural slicer is operating at the same time as our interface
slicer.

Balancing Generality and Specificity 4/30/92

w

5

6
7

8

9

I0

II

12

13

14

15

16

17

18

19

2O

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35
36

37

1 package togglel is
2

3 function on return boolean;
4

function off return boolean;

procedure set;

procedure reset;

end togglel;

package body togglel is

theValue : boolean := FALSE;

function on return boolean

begin
return theValue = TRUE;

end on;

is

function off return boolean is

begin

return theValue = FALSE;
end off;

procedure set is
begin

theValue := TRUE;

end set;

procedure reset is

begin
theValue := FALSE;

end reset;

end togglel;

I

w

W

m

J

m
i

l

g

g

Figure 3: A toggle package

As another example, consider the package toggle2, which in addition to the operations of

togglel includes the operation swap. This package is shown in Figure 5. Suppose we wish to write

a program which needs a toggle ADT and the operations on and swap. The interface slicing tool

finds that the operation on has no dependencies, but the operation swap needs on, set, and re-

set, and_,_ des_ slice of toggie_w_ch_pr0duced for our program is contains _e four

operations, on, set, reset, and swap, and does not conh_n of f. This slice is shown in Figure 6.

One of the differences between inte_aceslices and standard slices is the way that interface slic-

es are defined. While a standard slice is defined by a slicing criterion consisting of a program, a

statement an4 a set of variables, an interface slice is defined by a package and a set of operations

Balancing Generality and Specificity 10 4/30/92

w

w

IB

u

I

II
Ig

= =

i

m

llW

i

W

mi,

w

1
2

3

4

5

6
7

8

9
i0

ii

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

3O

package togglel is

function on return

procedure set;"

procedure reset;

end togglel;

package body togglel is

boolean;

theValue : boolean := FALSE;

function on return boolean is

begin
return theValue = TRUE;

end on;

procedure set is

begin
theValue := TRUE;

end set;

procedure reset is

begin
theValue := FALSE;

end reset;

end togglel;

Figure 4: The toggle package sliced by on, set and reset

in its interface. The package is an example of design-for-reuse and implements a full ADT, com-

plete with every operation needed to legally set and query all possible states of the ADT. The in-

terface slicer is an aid to design-with-reuse and prunes the full ADT down to the minimal set of

operations necessary to the task at hand. The interface slicer does not add functionality to the ADT,

as the ADT contains full functionality to start with. Rather, the slicer eliminates unneeded func-

tionality, resulting in a smaller, less complex source file for both compiler and reuser to deal with,

and smaller object files following compilation.

6 - An Extended Example

The examples above illustrate the general concept of interface slicing, but leave out some im-

portant details. To f'di in some of these details, we will next examine a pair of generic packages in

the public domain. These packages were explicitly written to be used as building blocks for Ada

Balancing Generality and Specificity
11 4/30/92

1
2

3

4
5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22
23

24
25

26

27

28

29
3O

31

32

33

34

35
36

37

38
39

4O

41

42

43

44
45

46

47

48

package toggle2 is

function on return boolean;

function off return boolean;

procedure set;

procedure reset;

procedure swap;

end toggle2;

package body toggle2 is

theValue : boolean := FALSE;

function on return boolean is

begin

return theValue = TRUE;
end on;

function off return boolean is

begin

return theValue = FALSE;
end off;

procedure set is
begin

theValue := TRUE;

end set;

procedure reset is
begin

theValue := FALSE;
end reset;

procedure swap is
begin

if on then

reset;
else

set;
end if;

end swap;

end toggle2;

Figure 5: Version 2 of thetoggle package

programs. The first is a generic package which provides the ADT set. The package is instantiated

by supplying itwi _ two paran_ters , the f'LrSt being the type of element which the set is to contain,

and the second a comparison function to determine the equality of two members of this type. The

pac_ge provides _ithe Operations necessary to create, manipulate, query, and destroy sets. The

full interface specification of the set is given in Appendix A.
......................

q$

D

llg

m
J

I

i
mm

I

i
!
I

g

g

m

il
B

g

!

l
m

I

I

!

[]

w

lg

w

ll

Balancing Generality and Specificity 12 4/30/92

g

n
m

W

F

r i

w

-IF

1

2
3

4

5

6

7

8
9

i0

Ii

12

13

14

15

16

17

18

19

2O

21

22

23

24

25
26

27

28

29

30
31

32

33

34

35
36

37

package toggle2 is

function on return boolean;

procedure swap.;.

end toggle2;

package body

theValue

end

toggle2 is

: boolean := FALSE;

function on return boolean is

begin
return theValue = TRUE;

end on;

procedure set is

begin
theValue := TRUE;

end set;

procedure reset is

begin
theValue := FALSE;

end reset;

procedure swap is

begin
if on then

reset;
else

set;

end if;

end swap;

toggle2;

Figure 6: Version 2 of toggle sliced by on and swap

This set package happens to use a list as the underlying representation upon which it builds the

set ADT, and so requires the second generic package which supplies the list ADT. This happens to

be a singly-linked list implementation which exports all the operations necessary to create, manip-

ulate, query, and destroy lists. This package also requires two generic parameters, the same ones

which set reqtfires_ The specification for the list package is given in Appendix B.

In the particular list and set packages we used for out example, there were no private opera-

tions.Private operations ate not available to be used in an interface slicing criterion; only the ex-

ported operations in the interface can be in the slicing criterion. In general, however, private

operations are treated identically to exported ones during the slicing process. The slicer, being a

Balancing Generality and Specificity 13 4/30/92

llW

Figure 7: The call graph for set

Figure 8: The sliced set

privileged pre-compilation code transformer, does not respect privacy.

6.1 - A Single Level of Slicing

Now suppose we wish to use the set package in a program we are writing, but we have a need

for only a few of the set operations, specifically, in this example, create, insert, and equal. We

would like to include all the code necessary to accomplish these operations, but would like to have

only the necessary code, and no more.

In order to slice the set package, we must examine the call graph of operations in the set pack-

age for the transitive closure of the three desired operations. Figure 7 shows the complete call graph

of the set package, and figure 8, shows the transitive closure of create, insert, and equal (nodes s2,

s4 and s8, respectively).* Figure 8 shows the slice corresponding to these three operations. Out of

the total of 14 operations exported by the original package, the slice based on create, insert, and

equal contains only 8 operations, with a considerable reduction in total size of code, although the

complexity of thc call graph remains the same.

Notice that in this example, the sliced set package needs the same number and type of generic

parameters as did the original package. This will not always be the case, however. In Figure 1, the

"Thecall g/ai_ii_fi_e labels correspond to the comments associated with each operation for

the package specifications appearing in the appendices.

Balancing Generality and Specificity 14 4/30/92

W

W

I
E

g

|
i

I

m

m
D

!
i

J

g

|
!

i i
i I

W

qE_

w

L_

Figure 9: The combined set and list call graph

original wc procedure needed 4 parameters, but the slice based on nc shown in Figure 2 needed

only 2 parameters. In general, out of all the local variables in a component, including both variables

bound to parameters and those declared within the component's scope, a slice will include a subset

of these local variables.

6.2 - A Second Level of Slicing

While the 8 operations represent an improvement over the original 14, we can go further, and

examine not only the set package, but also the list package as well. If we examine the transitive

closure of the three desired operations in the call graph of all the operations of both the set and list

packages, we can accomplish a much more dramatic improvement in the size and complexity of

the resulting slice. Figure 9 shows the full carl graph of the set and list packages. In standard Ada

usage, all of this would be included in a program were the generic set and list packages instanfiated

in a program. Figure 10 shows the call graph which is exactly the wansitive closure of the set op-

erations create, insert, and equal, as would be produced by interface slicing. The size and complex-

ity of this call graph are obviously much less than that of the full graph. Table 1 gives some

statistics on the relative sizes of the packages and their call _hs.

None of the examples above involved overloaded names. Interface slicing in the presence of

overloading is somewhat more complicated. Assuming that the resolution can be accomplished

Balancing Generality and Specificity 15 4/'30/92

(:

w

[

l
. . ---

Figure 10: The sliced set and list

Table 1: Package Statistics

#of
of nodes # of edges statements

Full Set 14 5 95

Sliccd Set 8 5 57

% reduction 36 0 40

Full Set and List 37 46 345

Sliced Set and list 20 19 200

% reduction 46 59 42

completely at compile time, there arc two options. The fast is a simple, naive approach in which

all versions of an overloaded operation are included. The second is to perform the type checking

for parameters and return value (if any) to determine which of the overloaded versions arc actually

called. For example, assume that list's operatio n attach is a quadruply overloaded procedure w:hi'ch

can be called with two elements, an element and a list, a list and an clement, or two lists. Resolution

of the overloading may, in a particular situation, allow three of the four procedures to be sliced

away, resulting in improved reduction of size and complexity.
.........................

If the overloading cannot be resolved at compile time, but must wait until runtime, we have no

option but to include the code for all possible operations which may be called. A static slice can

only blindly assume worst-case in the presence of run-time binding of overloaded procedure

:.__ _ :: :_ . _

W

V

H

u

U

i

!
J

i

i

B

J

J

J

I
i

B

!
m

I

!

!

I

M
Balancing Generality and Specificity t6 4/30/92

|

i..

V

£

E

names. Although our example extends to only two levels, the slicing can extend to as many levels

as exist in the compilation dependency graph of the packages included in the program.

7- Conclusion: Balancing Genericity and Specificity

We have discussed two main reuse-oriented paradigms in software engineering, namely de-

sign-for-reuse and design-with-reuse, and how the goals of these two paradigms have in the past

been viewed as being antagonistic, with the former striving for generality and the latter striving for

specificity. We have shown that with the proper language mechanisms and development tech-

niques, the goals are in fact complementary. The specific mechanism we use by way of example is

a new form of static program slicing which we call interface slicing. Using interface slicing, a com-

plete and generic component can be adapted to the specific needs of the program at hand, increas-

ing comprehension and reducing complexity, without sacrificing the generality of the base

component. Thus a developer designing a component for reuse can be completely unfettered of all

size constraints and strive for total generality, knowing that a reuser of the components can effort-

lessly have all unneeded functionality sliced away in a pre-eompilation step.

The artifacts produced by an interface slicer should not be considered as new components, any

more than instantiations of a generic are viewed as new components. Rather, we want to emphasize

the retention of the derivation specification, avoiding additional maintenance problems though the

life-cycle of what would then be custom components. We should keep the desired interface speci-

fication, and alter that when we need to change the way in which we bind through the interface to

the base component. Just as we don't associate any cost per se with the instanilailon of a generic,

we should not associate a cost with specialization through interface slicing, since it can be com-

pletely handled by the development environment.

Our approach addresses indirectly a critical social aspect of reuse, the trust that reusers place

in the components extracted from the repository [16]. Deriving a family of interface slices from a

Balancing Generality and Specificity 17 4/30192

V

base component implies that if the base component is correct (or at least certified), then all of the

slices must necessarily be correct (or at least certified) also.

'lll

W

L_...

w

g

f

J

J

M
g

m

U

B

Z
Ii

W

g

m

IB
M

M

g

Balancing Generality and Specificity 18 4/30192

m

J

!

II

"+ _

w

: =

t
w

L__

w

= .

References

2

3

4

5

6

8

H. Agrawal and J. Horgan, Dynamic Program Slicing, Technical Report SERC-TR-56-P,
l

Software Engineering Research Center, Purdue University, West Lafayette, Indiana, Decem-

her 1989.

H. Agrawal, R. DeMillo, and E. Spafford, Efficient Debugging with Slicing and Backtrack-

ing, Technical Report SERC-TR-80-P, Software Engineering Research Center, Purdue Uni-

versity West Layfayette, Indiana, October 1990.

V. R. Basili, G. Caldiera, and G. Cantone, "A Reference Architecture for the Component Fac-

tory," ACM Transactions on Software Engineering and Methodology, 1(1), January 1992, p.

53-80.

D. Batory, "On the Differences Between Very Large Scale Reuse and Large Scale Reuse,"

Proc. 4th Annual Workshop on Software Reuse, Reston VA, November 18-22 1991.

W. Baxter and H. R. Bauer, "The Program Dependence Graph and Vectorization," Proc.

Principles of Programming Languages: 16th Annual ACM Symposium, Austin, TX, January

11-13, 1989, p. 1-11.

L. CardeUi and P. Wegner, "On Understanding Types, Data Absuaction, and Polymorphism,"

ACM Computing Surveys, 17(4), December 1985, p. 471-522.

S. H. Edwards, An Approach for Constructing Reusable Software Components in Ada, IDA

Paper P-2378, Institute for Defense Analyses, Alexandria VA, Sept. 1990.

D. Eichmann, "A Repository Architecture Supporting Both Intra-Organizational and Inter-

Organizational Reuse," to be submitted.

9 K.B. Gallagher and J. R. Lyle, "Using Program Slicing in Software Maintenance," IEEE

Transactions on Software Engineering, 17(8), August 1991, p. 751-761.

10 E.S. Garnett and J. A. Mariani, "Software Reclamation," Software Engineering Journal,

(5)3, May 1990, p. 185-191.

11 A. Goldberg and D. Robson, Smalltalk-80: The Language and Its Implementation, Addison-

Wesley, 1983.

Balancing Generality and Specificity 19 4/30/92

U

12

13

14

15

16

17

S. Horwitz, J. Prins, and T. Reps, "Integrating Non-interfering Versions of Programs," Proc.

Fifteenth Annual ACM Symposium on Principles of Programming Languages, New York,

January 13-15, 1988,.p. 133-145.

S. Horwitz, T. Reps, and D. Binkley, "Interprocedural Slicing Using Dependence Graphs,"

ACM Transactions on Programming Languages and Systems, (12)1, p. 26-60, January 1990.

K. E. Huff, R. Thomson, and J. W. Gish, "The Role of Understanding and Adaptation in Soft-

ware Reuse Scenarios," Proc. 4th Annual Workshop on Software Reuse, Reston VA, Novem-

ber 18-22 1991.

R. E. Johnson and B. Foote, "Designing Reusable Classes," Journal of Object-Oriented Pro-

gramming, 1(2), June/July 1988, p. 22-35. Also appears in [22].

J. C. Knight, "Issues in the Certification of Reusable Parts," Proc. 4th Annual Workshop on

Software Reuse, Reston VA, November 18-22 1991.

B. Korel and J. Laski, "Dynamic program slicing," Information Processing Letters, (29)3, p.

155-163, October 1988.

w

W

J

u

IIg

z_

g

18 A. Lakhotia, Graph Theoretic Foundations of Program Slicing and Integra_'on, Technical

Report CACS-TR-91-5-5, Center for Advanced Computer Studies, University of Southwest-

em Louisiana Lafayette, LA, December 2, 1991.

19 H. Li and J. van Katwijk, "A Model to Reuse-in-the-Large," Proc. 4th Annual Workshop on

Software Reuse, Re ston VA, November 18-22 1991.

20 J.R. Lyle and K. B. Gallagher, "A Program Decomposition Scheme with Applications to

Software M_cation and Testing," Proceedings of the 22nd Hawaii International Confer-

ence on System Sciences, vol. 2, January 1989, p. 479-485.

21 R. Prieto-Dfaz, "Domain Analysis for Reusability," Proceedings of COMPSAC '87, p. 24-29.

Also appears in [22].

22 R. Prieto-Dfaz and G. Arango, Domain Analysis and Software Systems Modeling, IEEE Com-

puter Society Press, 1991.

23 R.K. Raj and H. M. Levy, "A Compositional Model for Software Reuse," The Computer

Journal, (32)4, 1989, p. 312-322.

w

I

IB

m

g

m

W

M

Balancing Generality and Specificity 20 4/30/92
g

n
g

h _
=,mr

24

25

26

27

28

29

30

A. Snyder, "Encapsulation and Inheritance in Object-Oriented Programming Languages,"

Proc. OOPSLA'86, Portland OR, September 29 - October 2 1986, p. 38-45.

I. Sommerville, Software Reuse, ISF Study Paper ISF/ULAVP/IS-3.1, University of Lancast-

er, UK, January 1988.

W. Tracz, "Software Reuse: Motivators and Inhibitors," Proc. of COMPCON "87, 1987, p.

358-363.

W. Tracz, "Software Reuse Myths," ACM SIGSOFT Software Engineenng Notes, (13) 1, Jan-

uary 1988, p. 17-21.

W. Tracz, "Parameterization: A Case Study," Ada Letters, (IX)4, May/June 1989, p. 92-102.

B. W. Weide, W. F. Odgen, and S. H. Zweben,"Reusable Software Components," in Advanc-

es in Computers, v. 33, M. C. Yovits (ed.), Academic Press, 1991, p. 1-65.

M. Weiser, Program Slicing: Formal, Psychological and Practical Investigations of an Auto-

matic Program Abstraction Method, Pb.D Thesis, University of Michigan, Ann Arbor, Mich-

igan, 1979

31 M. Weiser, "Program slicing," Proceedings of 5th International Conference on Software En-

gineering, p. 439-449, May 1981.

32 M. Weiser, "Programmers use slicing when debugging," Communications oftheACM, 25(7),

July 1982, p. 446-452.

33 M. Weiser, "Program Slicing," IEEE Transactions on Software Engineering, SE- 10, July

1984, p. 352-357.

=

L .

=m=

E

Balancing Generality and Specificity 21 4/30/92

w

Appendix A - The Package Specification for Set

Note: the comments in the right margin refer to the node labels in the call graphs of Figures 7,

8, 9, and 10.

1 generic

2 type elemType is private;

3 with function equal(el, e2: elemType) return boolean is "=';

4 package setPkg is
5

6

7

8

9

i0

II

12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
3O

31

32

33

34

35
36

type set is private;

type iterator is private;

noMore: exception;

function create return set;

procedure delete(s: in out set; e: in elemType);

procedure insert(s: in out set; e: in elemType);

function intersection(si, s2: set) return set;

function union(sl, s2: set) return set; _

function copy(s: set) return set;

function equal(sl, s2: set) return boolean;

function isEmpty(s: set) return boolean;

function isMember(s: set; e: elemType) return boolean;

function size(s: set) return natural;

function makeIterator(s: set) return iterator;

procedure next(iter: in out iterator; e: out elemType);

function more(iter: iterator) return boolean;

37 end setPkg;

-- sl

-- s2

-- s3

-- s4

-- s5

-- s6

-- s7

-- s8

-- s9

-- sl0

-- sll

-- s12

-- s13

-- s14

w

g

g

Z
I

g

g

U

w

J_

i i

Balancing Generality and Specificity 22 4/30/92

i

U

W !

=

% ,

lint

Appendix B - The Package Specification for List

Note: the comments in the right margin refer to the node labels in the call graphs of Figures 9

and 10.

1

2

3

4

5

6

7

8

9

I0

ii

12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

34
35

36
37

38

39

4O

41

42

43

44

45

46

47

48
49

5O
51

52 end listPkg;

generic

type elemType is private;
with function equal(el, e2: elemType) return boolean is "=";

package listPkg is

type list is private;

type iterator is private;

circularList: exception;

emptyList: exception;

itemNotPresent: exception;

noMore: exception;

procedure attach(ll: in out list; 12 in list);

function copy(l: list) return list;

function create return list;

procedure deleteHead(l: in out list);

procedure deleteItem(l: in out list; e: in itemType);

procedure deleteItems(l: in out list; e: in itemType);

function equal(ll, 12: list) return boolean;

function firstValue(l: list) return itemType;

function isInList(l: list; e: itemType) return boolean;

function isEmpty(l: list) return boolean;

function lastValue(l: list) return itemType;

function length(l: list) return integer;

function makeIterator(l: list) return iterator;

function more(l: iterator) return boolean;

procedure next(iter: in out iterator; e: itemType);

procedure replaceMead(l: in out list; e: itemType);

procedure replaceTail(l: in out list; newTail: in list);

function tail(l: list) return list;

function last(l: list) return list;

-- ii

-- 12

-- 13

-- 14

-- 15

-- 16

-- 17

-- 18

-- 19

-- ii0

-- iii

-- 112

-- 113

-- 114

-- 115

-- 116

-- 117

-- 118

-- 119

-- 120

-- 121

-- 122

-- 123

Balancing Generality and Specificity 23 4_0_2

II

W

iW

II

Z
I

t

I#

W

1It

ill

lil

Rll

Z Z

lit

